Skip to main content
Log in

LINE class retroposon is a component of DNA polymorphic fragments of trematode Himasthla elongata parthenitae

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

We found that the S-SAP (Sequence-Specific Amplification Polymorphism) method revealed clonal variability in the genomes of flatworm Himasthla elongata (Trematoda, Echinostomatidae) larvae. The larvae are parthenogenetic and have been considered genetically homogeneous. We performed cloning and sequencing of an about 500-bp conservative fragment (B1). B1 sequence analysis showed that this fragment had maximal homology with LINE elements from the CR1 family of Hydra and sparrow. In situ hybridization (FISH) revealed B1 dispersed distribution. Several other fragments cloned from the same agarose electrophoresis band correspond to the conservative domain of reverse transcriptase (RT) from CR1 family. Thus, it has been shown that (1) cercariae of trematode H. elongata have clonal variability, (2) the S-SAP method allows patterns to be obtained of fragment distribution characteristic for individual cercariae, and (3) RT conservative domain of the CR1 family participates in the pattern of polymorphic fragments generation. Identification of the CR1 transcripts in H. elongata cercariae transcriptom will be the aim of a future work. Cloning of variable fragments from the pattern of fragments is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pair

AFLP:

amplified fragment length polymorphism

CR1:

chicken repeat 1

CTAB:

cetyltrimeth-ylammonium bromide

LINE:

long interspersed nuclear elements

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 5, pp. 403–410.

    Google Scholar 

  • Arkhipova, I. and Meselson, M., Transposable elements in sexual and ancient asexual taxa, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 14473–14477.

    Article  PubMed  CAS  Google Scholar 

  • Bao, W. and Jurka, J., CR1 families from Hydra magnipapillata, Repbase Reports, 2008, vol. 8, pp. 1850–1850.

    Google Scholar 

  • Behura, S., Molecular marker systems in insects: current trends and future avenues, Mol. Ecol., 2006, vol. 15, pp. 3087–3113.

    Article  PubMed  CAS  Google Scholar 

  • Behura, S., Nair, S., and Mohan, M., Polymorphisms flanking the mariner integration sites in the rice gall midge (Orseolia oryzae Wood-Mason) genome are biotype-specific, Genome, 2001, vol. 44, pp. 947–954.

    PubMed  CAS  Google Scholar 

  • Birstein, V.J. and Mikhailova, N.A., On the karyology of trematodes of the genus Microphallus and Theirintermediate gastropod host, Littorina saxatilis. I. Chromosome analysis of three Microphallus species, Genetica, 1990, vol. 80, pp. 159–165.

    Article  Google Scholar 

  • Botros, S., William, S., Ebeid, F., Cioli, D., Katz, N., Day, T., and Bennett, J., Lack of evidence for an antischistosomal activity of myrrh in experimental animals, Am. Soc. Trop. Med. Hyg., 2004, vol. 72, pp. 119–123.

    Google Scholar 

  • Capy, P., Evolutionary biology. A plastic genome, Nature, 1998, vol. 396, pp. 522–523.

    Article  PubMed  CAS  Google Scholar 

  • Drew, A.C. and Brindley, P.J., A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates, Mol. Biol. Evol., 1997, vol. 14, pp. 602–610.

    Article  PubMed  CAS  Google Scholar 

  • Galaktionov, K.V. and Dobrovolskiy, A.A., The biology and evolution of trematodes, in An Essay on the Biology, Morphology, Lifecycles, Transmissions, and Evolution of Digenetic Trematodes, The Netherlands: Kluwer Academic Publisher, 2003.

    Chapter  Google Scholar 

  • Galaktionov, N.K., Fedorov, A.V., Galaktionov, K.V., and Podgornaya, O.I., Analysis of inter- and intraclonal genomic diversity of Himasthla elongate (Trematoda; Echinostomatidae) cercariae by AFLP, Parasitol. Res. 2013 (in press).

    Google Scholar 

  • Galaktionov, N.K., Podgornaya, O.I., and Fedorov, A.V., Characterization of mariner transposon from the genome of Himasthla elongate fluke, Cell Tissue Biol., 2009, vol. 3, no. 6, pp. 526–531.

    Google Scholar 

  • Giordano, J. Ge, Y., Gelfand, Y., Abrusa’n, G., Benson, G., and Warburton, P.E., Evolutionary history of mammalian transposons determined by genome-wide defragmentation, PLoS Comput Biol., 2007, vol. 3, p. e137.

    Article  PubMed  Google Scholar 

  • Grevelding, C., Genomic instability in Schistosoma mansoni, Mol. Biochem. Parasitol., 1999, vol. 101, pp. 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  • Hass, N.B., Grabowski, J.M, Silvitz, A.B, and Burch, J.B., Chicken Repeat 1 (CR1) Elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames, Gene, 1997, vol. 197, pp. 305–309.

    Article  Google Scholar 

  • Hirai, H. and Hirai, Y., FISH mapping for helminth genomes, Methods Mol. Biol., 2004, vol. 270, pp. 379–394.

    PubMed  CAS  Google Scholar 

  • Kalendar, R., Lee, D., and Schulman, A., FastPCR software for PCR primer and probe design and repeat search, Genes, Genomes Genomics, 2009, vol. 3, pp. 1–14.

    Google Scholar 

  • Khalturin, K.V., Mikhaylova, N.I., and Granovich, A.I., Genetic heterogeneity of natural populations of parthenites Microphallus piriformes and M. pygmaeus (Trematoda: Microphallidae), Parazitologiya, 2000, vol. 34, no. 6, pp. 486–500.

    CAS  Google Scholar 

  • Kohany, O., Gentles, A.J., Hankus, L, and Jurka, J., Annotation, submission and screening of repetitive elements in Repbase: Repbase submitter and censor, BMC Bioinform., 2006, vol. 7, p. 474.

    Article  Google Scholar 

  • Kuznetsova, I.S., Voronin, A.P., and Podgornaya, O.I., Telomere and Trf2/mtbp localization in respect to satellite DNA during the cell cycle of mouse cell line L929, Rejuvenat. Res., 2006, vol. 9, pp. 391–401.

    Article  CAS  Google Scholar 

  • Laha, T., Kewgrai, N., Loukas, A., and Brindley, J.P., Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, Schistosoma mansoni, BMC Genom., 2005, vol. 6, p. 154.

    Article  Google Scholar 

  • Lander, E., Linton, L.M., Birren, B., Nusbaum, C., Zody, M., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, pp. 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis, L., A view of interphase chromosomes, Science, 1990, vol. 250, pp. 1533–1540.

    Article  PubMed  CAS  Google Scholar 

  • Mutafova, T., Kanev, I., and Eizenhut, U., Karyological studies of Isthmiophora melis (Schrank, 1788) from its type locality, J. Helminthol., 1991, vol. 65, pp. 255–258.

    Article  Google Scholar 

  • Mutafova, T., Karyological studies on some species of the families Echinostomatidae and Plagiorchiidae and aspects of chromosome evolution in trematodes, Syst. Parasitol., 1994, vol. 28, pp. 229–238.

    Article  Google Scholar 

  • Queen, R.A., Gribbon, B.M., C.James, P., Jack, A., and Flavell, J., Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat, Mol. Gen. Genom., 2004, vol. 271, pp. 91–97.

    Article  CAS  Google Scholar 

  • Richard, J. and Voltz, A., Preliminary data on the chromosomes of Echinostoma caproni Richard, 1964 (Trematoda: Echinostomatidae), Syst. Parasitol., 1987, vol. 9, pp. 169–172.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E., and Manniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  • Silva, R. and Burch, J.B.E., Evidence that chicken CR1 elements represent a novel family of retroposons, Mol. Cell. Biol., 1989, vol. 9, pp. 3563–3566.

    PubMed  CAS  Google Scholar 

  • Semyenova, S.K., Chrisanfova, G.G., Fillipova, E.K., Beer, S.A., Voronin, M.V., and Ryskov, A.P., Individual and population variation in cercariae of bird schistosomes of the Trichobilharzia ocellate species group as revealed with the polymerase chain reaction, Russ. J. Genet., 2005, vol. 41, no. 1, pp. 12–16.

    CAS  Google Scholar 

  • Smit, A.F., CR1-X1_Pass—CR1 Non-LTR retrotransposon from Passeriformes, Repbase Reports, 2009, vol. 9, p. 50.

    Google Scholar 

  • Solovei, I, Kreysing, M., Lanctöt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B., Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 2009, vol. 137, pp. 356–368.

    Article  PubMed  CAS  Google Scholar 

  • Staginnus, C., Desel, C., Schmidt, T., and Kahl, G., Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea (Cicer arietinum L.), Genome, 2010, vol. 53, pp. 1090–1102.

    Article  PubMed  CAS  Google Scholar 

  • Stocking, C. and Kozak, C.A., Murine endogenous retroviruses, Cell. Mol. Life Sci., 2008, vol. 65, pp. 3383–3398.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., et al., The sequence of the human genome, Science, 2001, vol. 291, pp. 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Vincze, T., Posfai, J., and Roberts, R., NEBcutter: a program to cleave DNA with restriction enzymes, Nucleic Acids Res., 2003, vol. 31, pp. 3688–3691.

    Article  PubMed  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Waugh, R., McLean, K., and Flavell, A., Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP), Mol. Gen. Genet., 1997, vol., 253, pp. 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Winnepenninckx, B., Backeljau, T., and De, Wachter, R., Extraction of high molecular weight DNA from molluscs, Trends Genet., 1993, vol. 9, pp. 407.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. and Eickbush, T.H., Origin and evolution of retroelements based on their reverse transcriptase sequences, EMBO J., 1990, vol. 9, pp. 3353–3362.

    PubMed  CAS  Google Scholar 

  • Zampicinini, G., Blinov, A., Cervella, P., Guryev, V., and Sella, G., Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display, Genome, 2004, vol. 47, pp. 1154–1163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Solovyeva.

Additional information

Original Russian Text © A.I. Solovyeva, N.K. Galaktionov, O.I. Podgornaya, 2013, published in Tsitologiya, 2013, Vol. 55, No. 7, pp. 492–500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solovyeva, A.I., Galaktionov, N.K. & Podgornaya, O.I. LINE class retroposon is a component of DNA polymorphic fragments of trematode Himasthla elongata parthenitae. Cell Tiss. Biol. 7, 563–572 (2013). https://doi.org/10.1134/S1990519X13060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13060126

Keywords

Navigation