Skip to main content
Log in

Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow under hypoxia and inflammation in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Progenitor stromal cells derived from adipose tissue (ADSC) and bone marrow (BMDSC) hold great promise for use in the cell-based therapy of ischemic diseases. It was demonstrated that these cells secrete a number of angiogenic cytokines that stimulate vascularization. It was demonstrated that ADSC or BMDSC injected intramuscularly or intravenously into the animals with experimental hind-limb ischemia improve vascularization. However, low oxygen levels and inflammation may impair the viability and functional activity of transplanted cells. We have examined ADSC and BMDSC properties in vitro under hypoxic and inflammatory conditions. ADSC and BMDSC derived from Balb/c mice have been cultivated under hypoxia or in the presence of inflammatory cytokines. The viability of cells assessed by annexin V-PE binding and 7AAD storage, as well as by the quantitative TUNEL method, was not changed under hypoxic conditions Cell exposure to inflammatory cytokines induced apoptosis in 70% of cells. Inflammatory cytokines did not stimulate gene expression of angiogenic growth factors. Under hypoxia conditions up-regulation of genes for pro-angiogenic factors and down-regulation of anti-angiogenic genes were more apparent in ADSC. Using angiogenesis models in vitro and in vivo, we demonstrated that stromal cell maintenance under hypoxic conditions increased their ability to stimulate the growth of blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annabi, B., Lee, Y.T., Turcotte, S., Naud, E., Desrosiers, R.D., Champagne, M., Eliopoulos, M., Geli-peau, J., Beliveau, R., Hypoxia Promotes Murine Bone Marrow-Derived Stromal Cells Migration and Tube Formation, Stem Cells, 2003, vol. 21, pp. 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein, A.J., Gorskaja, J.F., and Kulagina, N.N., Fibroblast Precursors in Normal and Irradiated Mouse Nematopoietic Organs, Exp. Hematol., 1976, vol. 4, pp. 267–274.

    CAS  PubMed  Google Scholar 

  • Gimble, J.M., Katz, A.J., and Bunnel, B.A., Adipose-Derived Stem Cells for Regenerative Medicine, Circ. Res., 2007, vol. 100, pp. 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  • Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W., and Gimble, J.M., Surface Protein Characterization of Human Adipose Tissue-Derived Stromal Cells, J. Cell Physiol., 2001, vol. 189, pp. 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Yu, S.P., Fraser, J.L., et al., Transplantation of Hypoxia-Preconditioned Mesenchymal Stem Cells Improves Infracted Heart Function via Enhanced Survival of Implanted Cells and Angiogenesis, J. Thorac. Cardiovasc. Surg., 2008, vol. 135, pp. 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Hung, S.C., Pochampally, R.R., Chen, S.C., Hsu, S.C., and Prockop, D.J., Angiogenic Effects of Human Multipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apop-tosis, Increase Survival, and Stimulate Angiogenesis, Stem Cells, 2007, vol. 25, pp. 2363–2370.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.J., Kim, H.K., Cho, H.H., Bae, Y.C., Suh, K.T., and Jung, J.S., Direct Comparison of Human Mesenchymal Stem Cells Derived from Adipose Tissues and Bone Marrow in Mediating Neovascularization in Response to Vascular Ischemia, Cell Physiol. Biochem., 2007, vol. 20, pp. 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E., Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote in Vitro and in Vivo Arteriogenesis through Paracrine Mechanisms, Circ. Res., 2004, vol. 94, pp. 678–685.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R.H., Kim, B.C., Choi, I.S., Kim, H., Choi, H.S., Suh, K.T., Bae, Y.C., and Jung, J.S., Characterization and Expression Analysis of Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue, Cell Physiol. Biochem., 2004, vol. 14, pp. 311–324.

    Article  CAS  PubMed  Google Scholar 

  • Lin, G., Garcia, M., Ning, H., Banie, L., Gio, Y.L., Lue, T.F., and Lin, C.S., Defining Stem and Progenitor Cells within Adipose Tissue, Stem Cells Dev., 2008, vol. 17, pp. 1053–1063.

    Article  CAS  PubMed  Google Scholar 

  • Miranville, A., Heeschen, C., Sengenes, C., Curat, C.A., Busse, R., and Bouloumie, A., Improvement of Postnatal Neovascularization by Human Adipose Tissue-Derived Stem Cells, Circulation, 2004, vol. 110, pp. 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Moon, M.H., Kim, S.Y., Kim, Y.J., Kim, S.J., Lee, J.B., Bae, Y.C., Sung, S.M., and Jung, J.S., Human Adipose Tissue-Derived Mesenchymal Stem Cells Improve Postnatal Neovascularization in a Mouse Model of Hindlimb Ischemia, Cell Physiol. Biochem., 2006, vol. 17, pp. 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogi-hara, T., and Kaneda, Y., Adipose Tissue-Derived Stromal Cells as a Novel Option for Regenerative Therapy, J. Athero-scler. Thromb., 2006, vol. 13, pp. 77–81.

    Google Scholar 

  • Ohnishi, S., Yasuda, T., Kitamura, S., and Nagaya, N., Effect of Hypoxia on Gene Expression of Bone Marrow-Derived Mesenchymal Stem Cells and Mononuclear Cells, Stem Cells, 2007, vol. 25, pp. 1166–1177.

    Article  CAS  PubMed  Google Scholar 

  • Parfenova, E.V., Tsokolaeva, Z.I., Traktuev, D.O., Talitskii, K.A., Rakhmat-zade, T.M., Kalinina, N.I., Ratner, E.I., March, K.L., and Tkachuk, V.A., The Search for New Tools for Therapeutic Angiogenesis, Mol. Med., 2006, vol. 2, pp. 10–23.

    Google Scholar 

  • Peferoen, M., Blotting with Plate Electrodes, in Methods in Molecular Biology, N.J., Clifton: Humana, 1988, vol. 2, pp. 395–402.

    Google Scholar 

  • Peroni, D., Scambi, I., Pasini, A., Lisi, V., Bifari, F., Krampera, M., Rigotti, G., Sbarbati, A., and Galiè, M., Stem Molecular Signature of Adipose-Derived Stromal Cells, Exper. Cell Res., 2008, vol. 314, pp. 603–615.

    Article  CAS  Google Scholar 

  • Planat-Benard, V., Silvestre, J.S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., and Casteilla, L., Plasticity of Human Adipose Lineage Cells Toward Endothelial Cells: Physiological and Therapeutic Perspectives, Circulation, 2004, vol. 109, pp. 656–663.

    Article  PubMed  Google Scholar 

  • Potier, E., Ferreira, E., and Andriamanalijaona, R., Hypoxia Affects Mesenchymal Stromal Cell Osteogenic Differentiation and Angiogenic Factor Expression, Bone, 2007, vol. 40, pp. 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  • Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V., and March, K.L., Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells, Circulation, 2004, vol. 109, pp. 1292–1298.

    Article  PubMed  Google Scholar 

  • Ruas, J.L., Lendahl, U., and Poellinger, L., Modulation of Vascular Gene Expression by Hypoxia, Curr. Opin. Lipidol., 2007, vol. 18, pp. 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Rubina, K.A., Kalinina, N.I., Potekhina, A.V., Efimenko, A.Yu., Semina, E.V., Poliakov, A., Wilkinson, D.G., Parfyonova, Ye.V., and Tkachuk, V.A., T-Cadherin Suppresses Angiogenesis in Vivo by Inhibiting Migration of Endothelial Cells, Angiogenesis, 2007, vol. 10, pp. 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Schäffler, A. and Buchler, C., Concise Review: Adipose Tissue-Derived Stromal Cells—Basic and Clinical Implications for Novel Cell-Based Therapies, Stem Cells, 2007, vol. 25, pp. 818–827.

    Article  PubMed  Google Scholar 

  • Semenza, G.L., Vasculogenesis, Angiogenesis, and Arteriogenesis: Mechanisms of Blood Vessel Formation and Remodeling, J. Cell Biochem., 2007, vol. 102, pp. 840–847.

    Article  CAS  PubMed  Google Scholar 

  • Shichinohi, H., Kuroda, S., Yano, S., Hida, K., and Iwasaki, I., Role of SDF-1/CXCR4 System in Survival and Migration of Bone Marrow Stromal Cells after Transplantation into Mice Cerebral Infarct, Brain Res., 2007, vol. 1183, pp. 138–147.

    Article  Google Scholar 

  • Sun, S., Guo, Z., Xiao, X., Liu, B., Liu, X., Tang, P.H., and Mao, N., Isolation and Characterization of Bone Marrow Derived Stromal Cells from Mice, Stem Cells, 2003, vol. 31, pp. 527–535.

    Article  Google Scholar 

  • Tractuev, D.O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., Johnstone, B.H., and March, K.L., A Population of Multipotent Cd34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks, Circ. Res., 2008, vol. 102, pp. 77–85.

    Article  Google Scholar 

  • Traktuev, D.O., Parfenova, E.V., Tkachuk, V.A., and March, K.L., Adipose Stromal Cells—Plastic Type of Cells with High Therapeutic Potential, Tsitologiia, 2006, vol. 48, no. 2, pp. 83–94.

    CAS  PubMed  Google Scholar 

  • Wang M., Crisostomo, P., Herring, C., Meldrum, K.K., and Meldrum, D.R., Human Progenitor Cells from Bone Marrow or Adipose Tissue Produce Vegf, Hgf and Igf-1 in Response to Tnf by a P38 Mitogen Activated Protein Kinase Dependent Mechanism, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, vol. 219, pp. R880–R884.

    Google Scholar 

  • Wang, X., Li, C., Chen, Y., Hao, Y., Zhou, W., Chen, C., and Yu, Z., Hypoxia Enhances Cxcr4 Expression Favoring Microglia Migration via Hif-L alpha Activation, Biochem. Biophys. Res., 2008, vol. 371, pp. 283–288.

    Article  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., and Benhaim, P., Hedrick, M.H., Human Adipose Tissue Is a Source of Multipotent Stem Cells, Mol. Biol Cell., 2002, vol. 13, pp. 427–429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Efimenko.

Additional information

Original Russian Text © A.Yu. Efimenko, E.E. Starostina, K.A. Rubina, N.I. Kalinina, E.V. Parfenova, 2010, published in Tsitologiya, Vol. 52, No. 2, 2010, pp. 144–154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimenko, A.Y., Starostina, E.E., Rubina, K.A. et al. Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow under hypoxia and inflammation in vitro. Cell Tiss. Biol. 4, 117–127 (2010). https://doi.org/10.1134/S1990519X1002001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1002001X

Key words

Navigation