Skip to main content
Log in

Seismic anisotropy of the mantle beneath Eastern Asia based on ScS and S waves from deep-focus earthquakes

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The seismic anisotropy of the mantle is studied based on the data of S and ScS waves from earthquakes occurred in the mantle transition zone over the period of 2007–2013 and recorded by seismic stations in the continental margin of Asia, on Sakhalin Island, and in the southern part of the Kamchatka Peninsula. The measurements of the azimuths of polarization of the fast S and ScS waves in the continental margin of Asia show that they are predominantly oriented in the E–SE directions. Based on the distribution of the shear wave splitting parameters, the symmetry of the medium can be described in terms of a transversely isotropic model with a horizontal symmetry axis and may correspond to horizontal flow in the upper mantle beneath the Amur Plate. The fast azimuths of polarization of ScS wave, which were determined to be of N–NE directions in the northern area of Sakhalin Island and in the continental part of Asia, may correspond to an inclined flow under the conditions of oblique subduction and complex geometry of the downgoing Pacific Plate. In the south of the Kamchatka Peninsula, the S- and ScS-wave azimuths of polarization from the M 8.4 Sea of Okhotsk earthquake are determined to be oriented along the direction of the Pacific Plate motion. The fast-S-wave azimuths of polarization from the aftershocks of the Sea of Okhotsk earthquake and from other large events of 2008–2009 are determined to be nearly parallel to the motion trend of the Pacific Plate, but orthogonal to it for the events of 2008–2009. On the basis of the distribution of azimuths of polarization of the fast S waves, the symmetry of the medium can be described in terms of a transversely isotropic model with the symmetry axis inclined orthogonally to the plane of downgoing plate and oriented westward orthogonally to the trench strike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Luneva and D. M. Li, “Anisotropy and temporal variations in the fast azimuth of the fast shear wave beneath southern Kamchatka during 1993–2002,” Izv., Phys. Solid Earth, 42, 307–322 (2006).

    Article  Google Scholar 

  2. M. N. Luneva and V. V. Pupatenko, “Splitting of ScS and S waves from the Mw 8.4 Okhotsk deep-focus earthquake (May 24, 2013) and its strong aftershocks,” Russ. J. Pac. Geol. 8, 456–463 (2014).

    Article  Google Scholar 

  3. J. R. Bowman and M. Ando, “Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone,” Geophys. J. RAS 88, 25–41 (1987).

    Google Scholar 

  4. C. P. Conrad, M. D. Behn, and P. G. Silver, “Global mantle flow and the development of seismic anisotropy: differences between the oceanic and continental upper mantle,” J. Geophys. Res. 112, B07317 (2007). doi 10.1029/2006JB004608

    Article  Google Scholar 

  5. H. P. Crotwell, T. J. Owens, and J. Ritsema, “The TauP toolkit: flexible seismic travel-time and raypath utilities,” Seismol. Res. Lett. 70, 154–170 (1999).

    Article  Google Scholar 

  6. M. Faccenda, “Water in the slab: a trilogy,” Tectonophysic 614, 1–30 (2014).

    Article  Google Scholar 

  7. M. Faccenda, “Mid-mantle seismic anisotropy around subduction zones,” Phys. Earth Planet. Inter. 227, 1–19 (2014).

    Article  Google Scholar 

  8. K. M. Fischer, M. J. Fouch, D. A. Wiens, and M. S. Boettcher, “Anisotrophy and flow in pacific subduction zone back-arcs,” Pure Appl. Geophys 151, 463–475 (1998).

    Article  Google Scholar 

  9. M. J. Fouch and K. M. Fischer, “Mantle anisotropy beneath Northwest Pacific Plate,” J. Geophys. Res. 101 (B7), 15987–16002 (1996).

    Article  Google Scholar 

  10. B. K. Holtzman, D. L. Kohlestedt, M. E. Zimmerman, et al., “Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow,” Science 301, 1227–1230 (2003).

    Article  Google Scholar 

  11. G. Jiant, D. Zhao, and G. Zhang, “Detection of metastable olivine wedge in the Western Pacific slab and its geodynamic implications,” Phys. Earth Planet. Inter. 238, 1–7 (2015).

    Article  Google Scholar 

  12. E. Kaminski and N. M. Ribe, “A kinematic model for recrystallization and texture development in olivine polycrystals,” Earth Planet. Sci. Lett. 89, 253–267 (2001).

    Article  Google Scholar 

  13. E. Kaminski and N. M. Ribe, “Time scales for the evolution of seismic anisotropy in mantle flow,” Geochem., Geophys., Geosyst. 3 (1), (2002). doi 10.1026/2001GC000222

    Article  Google Scholar 

  14. S. Karato, H. Jung, I. Katayama, and P. Skemer, “Geodynamic significance of seismic anisotropy of the upper mantle: new insight from laboratory study,” Ann. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Article  Google Scholar 

  15. B. L. N. Kennett and F. R. Engdahl, “Traveltimes for global earthquake location and phase identification,” Geophys. J. Int. 105, 429–465 (1991).

    Article  Google Scholar 

  16. E. A. Konstantinovskaya, “Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia),” Tectonophysics 333, 75–94 (2001). doi 10. 1016/S0040-1951(00)00268-710.1016/S0040-1951(00) 00268-7

    Article  Google Scholar 

  17. V. Levin, D. Droznin, J. Park, and E. Gordeev, “Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka,” Geophys. J. Int. 158, 1009–1023 (2004).

    Article  Google Scholar 

  18. K. D. Litasov, A. Shatskiy, and E. Ohtani, “Melting and subsolidus phase relations in peridotite and eclogite systems with reduced C–O–H fluid at 3–16 GPa,” Earth Planet. Sci. Lett. 391, 87–99 (2014).

    Article  Google Scholar 

  19. K. H. Liu and S. S. Gao, “Making reliable shear-wave splitting measurements,” Bull. Seismol. Soc. Am. 103 (5), 2680–2693 (2013). doi 10.1785/0120120355

    Article  Google Scholar 

  20. M. D. Long and T. W. Becker, “Mantle dynamics and seismic anisotropy,” Earth Planet. Sci. Lett. 297, 341–354 (2010).

    Article  Google Scholar 

  21. M. D. Long and E. A. Wirth, “Mantle flow in subduction systems: the mantle wedge flow field and implications for wedge processes,” J. Geophys. Res.: Solid Earth 118 (2013). doi 10.1002/jgrb.50063

  22. M. N. Luneva and J. M. Lee, “Shear wave splitting beneath south Kamchatka during 3-year period associated with the 1997 Kronotsky earthquake,” Tectonophysics 374, 135–161 (2003).

    Article  Google Scholar 

  23. J. Park, V. Levin, J. Lees, M. T. Brandon, V. Peyton, E. Gordeev, and A. Ozerov, “A dangling slab, amplified arc volcanism mantle flow and seismic anisotropy near the Kamchatka plate corner,” in Plate Boundary Zones, Ed. by S. Stein and J. Freymueller (Am. Geol. Union, Washington, 2002), pp. 295–324.

    Google Scholar 

  24. V. Peyton, V. Levin, J. Park, M. T. Brandon, J. Lees, E. Gordeev, and A. Ozerov, “Mantle flow at a slab edge: seismic anisotropy in the Kamchatka region,” Geophys. Rev. Lett. 28, 379–382 (2001).

    Article  Google Scholar 

  25. E. Sandvol and T. Hearn, “Bootstrapping shear-wave splitting errors,” Bull. Seismol. Soc. 84, 1971–1977 (1994).

    Google Scholar 

  26. W. P. Schellart, M. W. Jessell, and G. S. Lister, “Asymmetric deformation in the backarc region of the Kuril Arc, Northwest Pacific: new insights from analogue modeling,” Tectonics 22, 1047–1063 (2003). doi 10.1029/2002TC001473

    Article  Google Scholar 

  27. W. P. Schellart, D. R. Stegman, and J. Freeman, “Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find an earth reference frame based on minimizing viscous dissipation,” Earth-Sci. Rev. 88, 118–144 (2008).

    Article  Google Scholar 

  28. W. P. Schellart, D. R. Stegman, R. J. Farrington, and L. Moresi, “Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning,” J. Geophys. Res. 116, B10408 (2011). doi 10.1029/2011JB008535

    Article  Google Scholar 

  29. W. P. Schellart and L. Moresi, “A new driving mechanism for back-arc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: results from dynamic subduction models with an overriding plate,” J. Geophys. Res.: Solid Earth 118, 3221–3248 (2013). doi 10.1002/jgrb.50173

    Article  Google Scholar 

  30. P. Solver and W. Chan, “Shear wave splitting and subcontinental mantle deformation,” J. Geophys. Res. 96 (10), 16429–16454 (1991).

    Article  Google Scholar 

  31. L. Vecsey, J. Plomerova, and V. Babushka, “Shearwave splitting measurements: problems and solutions,” Tectonophysic 462, 178–196 (2008).

    Article  Google Scholar 

  32. W. Wei, D. Zhao, J. Xu, F. Wei, G. Liu, “P and S wave tomography and anisotropy in Northwest Pacific and East Asia: constraints on stagnant slab and intraplate volcanism,” J. Geophys. Res.: Solid Earth 120, 1642–1666 (2015). doi 10.1002/2014JB011254

    Article  Google Scholar 

  33. E. Wirth and M. D. Long, “Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones,” Phys. Earth Planet. Inter. 181, 141–154 (2010).

    Article  Google Scholar 

  34. A. Wüstefeld, G. Bokelmann, C. Zaroli, and G. Barruol, “Splitlab: A shear-wave splitting environment in Matlab,” Comput. Geosci. 34, 515–528 (2008). doi 10.1016/jcageo.2007.08.002

    Article  Google Scholar 

  35. Z. Znan, H. Kanamori, V. C. Tsai, D. V. Helmberger, S. Wei, “Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes,” Earth Planet. Sci. Lett. 385, 89–96 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Luneva.

Additional information

Original Russian Text © M.N. Luneva, V.V. Pupatenko, 2016, published in Tikhookeanskaya Geologiya, 2016, Vol. 35, No. 4, pp. 40–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luneva, M.N., Pupatenko, V.V. Seismic anisotropy of the mantle beneath Eastern Asia based on ScS and S waves from deep-focus earthquakes. Russ. J. of Pac. Geol. 10, 274–282 (2016). https://doi.org/10.1134/S1819714016040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714016040059

Keywords

Navigation