Skip to main content
Log in

Mantle Seismic Anisotropy beneath the Amur Plate According to the Data of ScS Waves from Deep-Focus Earthquakes

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Mantle seismic anisotropy beneath the Amur Plate is studied using the data of ScS waves reflected from the outer core of the Earth from local deep earthquakes in the area of five stations located in Primorye and Priamurye regions. The results of measuring the parameters of the split ScS waves near the stations show the dominance of the polarization azimuths of the fast wave along the eastern directions and are consistent with azimuthal anisotropy and the direction of motion of the Pacific Plate (300°) and Amur Plate (~120°) depending on the epicenter–station direction. In Primorye, in the vicinity of the TEY station, the polarization azimuths of the fast ScS wave dominate in the interval of NE–E directions orthogonally to the lines of the mantle flow along the complex 3D surface of the subsiding Pacific Plate. It is revealed that the delay time of ScS waves increases to 2 s and 3.4 s in the upper mantle and in the mantle transition zone, respectively, as the depth of events increases. The highest degree of anisotropy manifests itself in the upper mantle. In the case of the vertical propagation of waves under conditions of horizontal mantle flow, the difference in the arrival times of the ScS waves is the lowest. The anisotropy in the upper zone of the transition mantle can be related to the wadsleyite texture with the polarization of the fast ScS wave parallel or orthogonally to the motion of the stagnant plate. The anisotropy in the upper part of the lower mantle is associated with the texture of perovskite and periclase with the orientation of the symmetry axis and the polarization of the ScS waves in parallel to the plate subsidence and the subduction direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. B. Yanovskaya and V. M. Kozhevnikov, “Upper mantle anisotropy beneath the asian continent from group velocities of Rayleigh and Love waves,” Russ. Geol. Geophys. 47 (5), 618–625 (2006).

    Google Scholar 

  2. T. W. Becker, J. B. Kellogg, G. Ekstrom, and R. J. O' Connell, “Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models,” Gec-phys. J. Int 155, 696–714 (2003).

    Google Scholar 

  3. T. W. Becker, S. Lebedev, and M. D. Long, “On the relationship between azimuthal anisotropy from shear splitting and surface wave tomography,” J. Geophys. Res. 117, B01306 (2012).

    Article  Google Scholar 

  4. J. R. Bowman and M. Ando, “Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone,” Geophys. J. 88, 25–41 (1987).

    Article  Google Scholar 

  5. P. Cordier, L. Zsoldos, and G. Tichy, “Dislocation creep in MgSiO4 Perovskite at Conditions of the Earth’s uppermost lower mantle,” Nature, No. 428, 837–840 (2004).

    Article  Google Scholar 

  6. M. R. Brudzinski, “Seismic anisotropy in the mantle transition zone beneath Fiji-Tonga,” Geophys. Rev. Lett. 30 (13), 1682 (2003).

    Google Scholar 

  7. H. P. Crotwell, T. J. Owens, and J. Ritsema, “The TauP toolkit: flexible seismic travel-time and raypath utilities,” Seismol. Res. Lett 70, 154–17 (1999).

    Article  Google Scholar 

  8. G. Jiang, D. Zhao, and G. Zhang, “Detection of metastable olivine wedge in the western Pacific slab and its geodynamic implications,” Phys. Earth Planet. Inter. 238, 1–7 (2015).

    Article  Google Scholar 

  9. M. Faccenda, “Mid mantle seismic anisotropy around subduction zones,” Phys. Earth. Planet. Inter 227, 1–19 (2014).

    Article  Google Scholar 

  10. B. J. Foley and M. D. Long, “Upper and mid-mantle anisotropy beneath the Tonga slab,” Geophys. Rev. Lett. 38, L02303 (2011).

  11. Y. Fukao, S. Widiyantoro, and M. Obayashi “Stagnant slabs in the upper and lower mantle transition region,” Rev. Geophys. 39, 291–323 (2001).

    Article  Google Scholar 

  12. S. Karato, H. Jung, I. Katayama, and P. Skemer, “Geodynamic significance of seismic anisotropy of the upper mantle: new insight from laboratory study,” Ann. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Article  Google Scholar 

  13. Y. Nishihara, N. Nishiyama, K. Fujino, and T. Irifune, “Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite,” Phys. Earth. Planet. Inter 216, 91–98 (2013).

    Article  Google Scholar 

  14. B. L. N. Kennett and E. R. Engdahl, “Travel times for global earthquake location and phase identification,” Geophys. J. Int. 105, 429–465 (1991).

    Article  Google Scholar 

  15. E. A. Kneller and P. E. van Keken, “The effects of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy,” Geochem. Geophys. Geosyst 9 (1), Q01003 (2008).

    Article  Google Scholar 

  16. G. Ekstrom and A. M. Dziewonski, “Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model,” J. Geophys. Res. 113 (2008).

  17. S. Lebedev, and R. D. Van Der Hilst, “Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms,” Geophys. J. Int. 173, 505–518 (2008).

    Article  Google Scholar 

  18. C. Li and R. D. van der Hilst, “Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography,” J. Geophys. Res. 115, B07308 (2010).

    Google Scholar 

  19. K. H. Liu, S. S. Gao, Y. Gao, and J. Wu, “Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath Northeast Asia,” J. Geophys. Res. 113, B01305 (2008).

    Google Scholar 

  20. X. Q. Liu, H. K. Zhou, and H. S. Li, “Anisotropy of the upper mantle in Chinese Mainland and its vicinity,” Acta Seismol. Sinica 14 (4), 359–370 (2001).

    Article  Google Scholar 

  21. D. Mainprice, “Seismic anisotropy of the deep Earth from a mineral and rock physics perspective,” Ed. by G. Schubert, Treatise on Geophysics (Elsevier, Oxford, 2007), Vol. 2, pp. 437–492.

  22. D. Mainprice, A. Tommasi, D. Ferte, P. Carrez, and P. Cordier, “Predicted glide system and crystal preferred orientations of polycrystalline silicate mg-perovskite at high-pressure: implications for the seismic anisotropy in the lower mantle,” Earth Planet. Sci. Lett. 271, 135–144 (2008).

    Article  Google Scholar 

  23. L. Miyagi, G. Amulele, K. Otsuka, Z. Du, R. Farla, and S. I. Karato, “Plastic anisotropy and slip systems in ringwoodite deformed to high shear strain in the Rotational Drickamer Apparatus,” Physics Earth Planet. Inter 228, 244–253 (2014).

    Article  Google Scholar 

  24. J. P. Montagner and H. C. Nataf, “A simple method for inverting the azimuthal anisotropy of surface waves,” J. Geophys. Res. 91, 511–520 (1986).

    Article  Google Scholar 

  25. M. K. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science, No. 304, 855–858 (2004).

    Article  Google Scholar 

  26. NEIC, http://earthquake.usgs.gov/regional/neic, United States Geological Survey, USA.

  27. A. R. Oganov and S. Ono, “Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in the Earth’s D'' Layer,” Nature 430, 445–448 (2004).

    Article  Google Scholar 

  28. M. Panning and B. Romanowicz, “A three-dimensional radially anisotropic model of shear velocity in the whole mantle,” Geophys. J. Int. 167, 361–379 (2006).

    Article  Google Scholar 

  29. E. Sandvol and T. Hearn, “Bootstrapping shear-wave splitting errors,” Bull. Seismol. Soc 84, 1971–1977 (1994).

    Google Scholar 

  30. S. H. Shim, T. S. Duffy, R. Jeanloz, and G. Shen, “Stability and crystal structure of MgSiO3 perovskite to the core–mantle boundary,” Geophys. Rev. Lett. 31, L10603 (2004).

  31. P. Silver and W. Chan, “Shear wave splitting and subcontinental mantle deformation,” J. Geophys. Res. 96 (10), 16429–16454 (1991).

    Article  Google Scholar 

  32. E. Thurel, J. Douin, and P. Cordier, “Plastic deformation of wadsleyite: III. Interpretation of dislocations and slip systems,” Phys. Chem. Miner. 30, 271–279 (2003).

    Google Scholar 

  33. A. Tommasi, D. Mainprice, P. Cordier, C. Thoraval, and H. Couvy, “Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone,” J. Geophys. Res. 109, B12405 (2004).

    Article  Google Scholar 

  34. A. Vaucher, A. Tommasi, and D. Mainprice, “Fault (shear zone) in the Earth’s mantle,” Tectonophysics 558–559, 1–27 (2012).

    Article  Google Scholar 

  35. L. Vecsey, J. Plomerova, and V. Babuska, “Shear-wave splitting measurements-problems and solutions,” Tectonophysics 462, 178–196 (2008).

    Article  Google Scholar 

  36. L. P. Vinnik, Y. L. Stunff, and L. Makeyeva, “Seismic anisotropy in the D'' Layer,” Geophys. Rev. Lett. 22, 1657–1660 (1995).

    Article  Google Scholar 

  37. H. R. Wenk, I. Lonardelli, J. Pehl, V. Prakapenka, G. Shen, H. K. Mao, “In situ observation of texture development in olivine, ringwoodite, magnesiowuestite and silicate perovskite at high pressure,” Earth Planet. Sci. Lett. 226, 507–519 (2004).

    Article  Google Scholar 

  38. J. Wookey, J. M. Kendall, and G. Rümpker, “Lowermost mantle anisotropy beneath the North Pacific from differential S-ScS splitting,” Geophys. J. Int. 161, 829–838 (2005).

    Article  Google Scholar 

  39. J. Wookey and J. M. Kendall, “Seismic anisotropy of post-perovskite and the lowermost mantle,” Post-Perovskite: the Last Mantle Phase Transition, Ed. by K. Hirose , (Am. Geophys. Union, 2007), pp. 171–189.

    Google Scholar 

  40. A. Wüstefeld, G. Bokelmann, C. Zaroli, and G. Barruol, “Splitlab: a shear-wave splitting environment in Matlab,” Comput. Geosci. 34, 515–528 (2008).

    Article  Google Scholar 

  41. L. Zhao and T. Zheng, “Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: distinct variation from east to west,” Geophys. Rev. Lett. 32, L10309 (2005).

  42. D. Zhao and E. Ohtani, “Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics,” Gondwana Res. 16, 401–413 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as a state assignment of Kosygin Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences and was supported in part by the Complex Far East Program of Fundamental Scientific Research, Far East Branch, Russian Academy of Sciences (project 18-5-024). The authors are grateful to the Branch of Geophysical Survey of RAS for providing the seismic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Luneva.

Additional information

Recommended for publishing by V.G. Bykov

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luneva, M.N., Pupatenko, V.V. Mantle Seismic Anisotropy beneath the Amur Plate According to the Data of ScS Waves from Deep-Focus Earthquakes. Russ. J. of Pac. Geol. 12, 400–407 (2018). https://doi.org/10.1134/S1819714018050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714018050068

Keywords:

Navigation