Skip to main content
Log in

Prenatal Hypoxia Causes an Increase in the Content and Transcriptional Activity of the Hypoxia-Inducible Factor HIF1α in the Hippocampus of Adult and Aging Rats

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Using Western blotting, we conducted a study investigating the expression levels of the regulatory alpha subunit of hypoxia-inducible factor 1 (HIF1α) in the hippocampus of adult and aging rats, whose mothers were exposed to severe damaging hypoxia during days 14-16 of pregnancy. Furthermore, we assessed the relative abundance of mRNA for HIF1-regulated genes (hk1, ldha, mct4, pdk1) using quantitative real-time PCR in adult rats. Our findings indicate that prenatal hypoxia induces a sustained increase in HIF1α expression in the hippocampus. Additionally, we observed an accompanying elevation in the mRNA levels of the investigated HIF1-regulated genes. These results suggest that prenatal hypoxia exerts a lasting impact on hippocampal metabolism. Consequently, these metabolic disruptions may persist throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Wang, B., Zeng, H., Liu, J., and Sun, M., Front. Neurosci., 2021, vol. 15. https://doi.org/10.3389/fnins.2021.755554

  2. Cristancho, A., Gadra, E., Samba, I., Zhao, C., Ouyang, M., Magnitsky, S., Huang, H., Viaene, A., Anderson, S., and Marsh, E., Dev. Neurosci., 2022, vol. 44, pp. 246–265. https://doi.org/10.1159/000524045

    Article  CAS  PubMed  Google Scholar 

  3. Piešová M. and Mach, M., Physiol. Res., 2020, vol. 69, pp. 199–213. https://doi.org/10.33549/physiolres.934198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hompes, T., Vrieze, E., Fieuws, S., Simons, A., Jaspers, L., Van Bussel, J., Schops, G., Gellens, E., Van Bree, R., Verhaeghe, J., Spitz, B., Demyttenaere, K., Allegaert, K., Van den Bergh, B., and Claes, S., Pediatric Res., 2012, vol. 72, pp. 305–315. https://doi.org/10.1038/pr.2012.70

    Article  CAS  Google Scholar 

  5. Miranda, A. and Sousa, N., Brain and Behavior., 2018. vol. 8, art. e00920. https://doi.org/10.1002/brb3.920

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pryce, C., Brain Res. Rev., 2008, vol. 57, pp. 596–605. https://doi.org/10.1016/j.brainresrev.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  7. Vetrovoy, O., Nimiritsky, P., Tyulkova, E., and Rybnikova, E., Neurochem. J., 2020, vol. 14, pp. 286–289. https://doi.org/10.1134/S1819712420030125

    Article  CAS  Google Scholar 

  8. Gonzalez-Rodriguez, P., Xiong, F., Li, Y., Zhou, J., and Zhang, L., Neurobiol. Dis. 2014, vol. 65, pp. 172–179. https://doi.org/10.1016/j.nbd.2014.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Golan, H. and Huleihel, M., Dev. Sci., 2006. vol. 9, pp. 338–349. https://doi.org/10.1111/j.1467-7687.2006.00498.x

    Article  PubMed  Google Scholar 

  10. Dengler, V., Galbraith, M., and Espinosa, J., Crit. Rev. Biochem. Mol. Biol., 2014, vol. 49, pp. 1–15. https://doi.org/10.3109/10409238.2013.838205

    Article  CAS  PubMed  Google Scholar 

  11. Semenza, G., Cold. Spring. Harb. Symp. Quant. Biol., 2011, vol. 76, pp. 347–353. https://doi.org/10.1101/sqb.2011.76.010678

    Article  CAS  PubMed  Google Scholar 

  12. Semenza, G., Trends Mol. Med., 2001, vol. 7, pp. 345–350. https://doi.org/10.1016/s1471-4914(01)02090-1

    Article  CAS  PubMed  Google Scholar 

  13. Zepeda, A., Pessoa, A., Castillo, R., Figueroa, C., Pulgar, and V., Farías, J., Cell Biochem. Funct., 2013, vol. 31, pp. 451–459. https://doi.org/10.1002/cbf.2985

    Article  CAS  PubMed  Google Scholar 

  14. Vetrovoy, O., Sarieva, K., Lomert, E., Nimiritsky, P., Eschenko, N., Galkina, O., Lyanguzov, A., Tyulkova, E., and Rybnikova, E., J. Mol. Neurosci., 2020 vol. 70, pp. 635–646. https://doi.org/10.1007/s12031-019-01469-8

    Article  CAS  PubMed  Google Scholar 

  15. Semenza, G., Genes Dev., 2000, vol. 14, pp. 983–991. https://doi.org/10.1101/gad.14.16.1983

    Article  Google Scholar 

  16. Vetrovoy, O., Stratilov, V., Nimiritsky, P., Makarevich, P., and Tyulkova, E., Neurochem. Res., 2021, vol. 46, pp. 550–563. https://doi.org/10.1007/s11064-020-03191-z

    Article  CAS  PubMed  Google Scholar 

  17. Vetrovoy, O., Tyulkova, E., Stratilov, V., Baranova, K., Nimiritsky, P., Makarevich, P., and Rybnikova, E., Dev. Neurosci., 2021, vol. 42, pp. 145–158. https://doi.org/10.1159/000512223

    Article  CAS  Google Scholar 

  18. Vetrovoy, O., Stratilov, V., Lomert, E., and Tyulkova, E., Neurochem. Res., 2023, vol. 48, pp. 1455–1467. https://doi.org/10.1007/s11064-022-03837-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation, agreement no. 075-15-2020-921 from November 11, 2020 within the project “Integrative Physiology for Medicine, High-Tech Healthcare, and Technologies of Stress Resistance,” direction “The Biological and Social Basis of Inclusiveness.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vetrovoy.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All the experiments were performed according to the rules of the European Council Directive 86/609/EEC on the use of animals for experimental studies. The protocols of the experiments were approved by the Commission for the Humane Treatment of Animals of the Pavlov Institute of Physiology, Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author; address: 199034 Russia, St. Petersburg, nab. Makarova, 6, e-mail: vov210292@yandex.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapova, S.S., Zachepilo, T.G., Stratilov, V.A. et al. Prenatal Hypoxia Causes an Increase in the Content and Transcriptional Activity of the Hypoxia-Inducible Factor HIF1α in the Hippocampus of Adult and Aging Rats. Neurochem. J. 17, 751–754 (2023). https://doi.org/10.1134/S1819712423330012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712423330012

Keywords:

Navigation