Skip to main content
Log in

Nitric Oxide Inhibits the Functional Activation of the Medial Prefrontal Cortex Serotonin System during Fear Formation and Decreases Fear Generalization

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We have previously shown that acquisition of a conditioned fear response (the fear formation model) is accompanied by an increase in the level of extracellular serotonin in the medial prefrontal cortex enhancing future fear generalization. The aim of this work was to investigate the possible contribution of NO-serotonin interaction in this regulation. In vivo microdialysis in Sprague–Dawley rats showed that the infusion of the NO donor diethylamine nonoate (1 mM) into the medial prefrontal cortex via dialysis increased the level of extracellular serotonin in this area during the first 30 minutes of infusion followed by its gradual decrease. This treatment prevented the increase in the level of extracellular serotonin in the medial prefrontal cortex caused by acquisition of a conditioned fear response (a paired presentation of a conditioned auditory cue (CS+) and inescapable footshock) and after 24 h led to a decrease in animal freezing in response to a differential auditory cue (CS–) not associated with footshock (a measure of generalized fear) without affecting the level of freezing in the same animals in response to the conditioned cue (CS+) previously paired with footshock (a measure of conditioned fear). The data indicate that during the conditioned fear response acquisition, nitrergic signals in the medial prefrontal cortex inhibit the functional activation of the serotonin system reducing its contribution to generalized fear formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERNCES

  1. Arnsten, A.F., Raskind, M.A., Taylor, F.B., and Connor, D.F., Neurobiol. Stress, 2015, vol. 1, pp. 89–99.

    Article  Google Scholar 

  2. Rozeske, R.R., Valerio, S., Chaudun, F., and Herry, C., Genes Brain Behav., 2015, vol. 14, no. 1, pp. 22–36.

    Article  CAS  Google Scholar 

  3. Saul’skaya, N.B., Usp. Fiziol. Nauk, 2018, vol. 49, no. 4, pp. 12–29.

    Google Scholar 

  4. Xu, W. and Sudhof, T.C., Science, 2013, vol. 339, no. 6125, pp. 1290–1295.

    Article  CAS  Google Scholar 

  5. Rozeske, R.R., Jercog, D., Karalis, N., Chaudun, F., Khoder, S., Girard, D., Winke, N., and Herry, C., Neuron, 2018, vol. 97, no. 4, pp. 898–910.

    Article  CAS  Google Scholar 

  6. Kaczkurkin, A.N., Burton, P.C., Chazin, S.M., Manbeck, A.B., Espenses-Sturges, T., Cooper, S.E., Sponheim, S.R., and Lissek, S., Am. J. Psychiatry, 2017, vol. 174, no. 2, pp. 125–134.

    Article  Google Scholar 

  7. Vieira, P.A., Corches, A., Lovelace, J.W., Westbrook, K.B., Mendoza, M., and Korzus, E., Neurobiol. Learn. Mem., 2015, vol. 119, pp. 52–62.

    Article  CAS  Google Scholar 

  8. Bayer, H. and Bertoglio, L.J., Sci. Report, 2020, vol. 10.

  9. Saul’skaya, N.B. and Marchuk, O.E., Ross. Fiziol. Zhurn., 2018, vol. 104, no. 4, pp. 466–476.

    Google Scholar 

  10. Saul’skaya, N.B. and Marchuk, O.E., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2019, vol. 69, no. 3, pp. 342–352.

    Google Scholar 

  11. Saul’skaya, N.B. and Marchuk, O.E., Ross. Fiziol. Zhurn., 2020, vol. 106, no. 12, pp. 1541–1552.

  12. Saul’skaya, N.B. and Sudorgina, P.V., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2015, vol. 65, no. 3, pp. 372–381.

    Google Scholar 

  13. Ghasemi, M., Claunch, J., and Niu, K., Progress in Neurobiology, 2019, vol. 173, pp. 54–97.

    Article  CAS  Google Scholar 

  14. Zhou, Q.G., Zhu, X.H., Nemes, A.D., and Zhu, D.Y., IBRO Reports, 2018, vol. 5, pp. 116–132.

    Article  Google Scholar 

  15. Maximino, C., Lima, M.G., Batista, E.J.O., Oliveira, R.R.H.M., and Herculano, A.M., Neurosci. Let., 2015, vol. 588, pp. 54–56.

    Article  CAS  Google Scholar 

  16. Chiavegatto, S., Dawson, V.L., Mamounasi, L.A., Koliatsos, V.E., Dawson, T.M., and Nelson, R.J., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 3, pp. 1277–1281.

    Article  CAS  Google Scholar 

  17. Pavesi, E., Heldt, S.A., and Fletcher, M.L., Learn. Mem., 2013, vol. 20, no. 9, pp. 482–490.

    Article  CAS  Google Scholar 

  18. Saul’skaya, N.B., Marchuk, O.E., Puzanova, M.A., and Trofimova, N.A., Neurochem. J., 2020, vol. 14, pp. 408–414.

    Article  Google Scholar 

  19. Karolewicz, B., Paul, I.A., and Antkiewicz-Michaluk, L., Pol. J. Pharmacol., 2001, vol. 53, no. 6, pp. 587–596.

    CAS  PubMed  Google Scholar 

  20. Dunn, A.J., Neurochem. Int., 1998, vol. 33, no. 6, pp. 551–557.

    Article  CAS  Google Scholar 

  21. Smith, J.C.E. and Whitton, P.S., Neurosci. Let., 2000, vol. 291, no. 1, pp. 5–8.

    Article  CAS  Google Scholar 

  22. Lu, Y., Simpson, K.L., Weaver, K.J., and Lin, R.C.S., Anat. Rec. (Hoboken), 2010, vol. 293, no. 11, pp. 1954–1965.

    Article  Google Scholar 

  23. Kaehler, S.T., Singewald, N., Sinner, C., and Philippu, A., Brain Res., 1999, vol. 835, no. 2, pp. 346–349.

    Article  CAS  Google Scholar 

  24. Vila-Verde, C., Marinho, A.L., and Guimaraes, F.S., Neurosci., 2016, vol. 320, no. 1, pp. 30–42.

    Article  CAS  Google Scholar 

  25. Resstel, L.B., Correa, F.M., and Guimaraes, F.S., Cereb. Cortex, 2008, vol. 18, no. 9, pp. 2027–2035.

    Article  Google Scholar 

  26. Saul’skaya, N.B. and Sudorgina, P.V., Ross. Fiziol. Zhurn., 2016, no. 10, pp. 1165–1175.

Download references

Funding

The study was conducted with no external support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Saulskaya.

Ethics declarations

Conflict of interests. The authors declare no conflict of interests.

Ethical approval. The study was conducted in compliance with international, national, and/or institutional principles of care and use of laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulskaya, N.B., Burmakina, M.A. & Trofimova, N.A. Nitric Oxide Inhibits the Functional Activation of the Medial Prefrontal Cortex Serotonin System during Fear Formation and Decreases Fear Generalization. Neurochem. J. 15, 266–272 (2021). https://doi.org/10.1134/S1819712421030107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421030107

Keywords:

Navigation