Skip to main content
Log in

Effect of 3-Oxypyridine Derivatives and Succinic Acid on the Activity of Monoamine Oxidases and the Content of Monoamines in the Hypothalamus of Rats with Alloxan-Induced Diabetes

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the effect of novel domestic derivatives of 3-oxypyridine and succinic acid (emoxypine, reamberin, and mexidol) on the activity of monoamine oxidases (MAO-A and MAO-B) and the level of biogenic amines (serotonin and dopamine) in the hypothalamus during the first two weeks of alloxan-induced diabetes in rats. During the first 14 days of alloxan-induced diabetes in rats, the levels of serotonin and dopamine decreased in the hypothalamus in the presence of unchanged MAO-B activity. The MAO-A activity and serotonin level in the hypothalamus of diabetic rats did not differ from the control values ​​at the initial stage of the experiment, and after a significant transient decrease, they again reached normal levels. The dopamine level in the hypothalamus of rats with experimental diabetes decreased only at the end of the experiment. The application of the studied drugs at doses equivalent to the therapeutic range for humans corrected the transient shifts in MAO-A activity and the delayed deficiency of monoamines in the hypothalamus of animals with alloxan-induced diabetes. The seven-day administration of an isolated derivative of 3-oxypyridine (emoxypine) and an isolated derivative of succinic acid (reamberin) prevented the transient decrease in MAO-A activity, compensated the concomitant deficiency of serotonin and increased the dopamine level in the hypothalamus of rats with alloxan-induced diabetes. Mexidol, which is simultaneously a derivative of 3‑oxypyridine and succinic acid, prevented a decrease in the hypothalamic levels of serotonin and dopamine in diabetic rats after 7 and 14-fold use (respectively). Correction of hypothalamic serotonin deficiency by Mexidol was not accompanied by changes in the activity of MAO-A and MAO-B. A decrease in hypothalamic dopamine deficiency as a result of a two-week administration of Mexidol was accompanied by a decrease in MAO-A activity. The intensity of neurochemical effects induced by derivatives of 3-oxypyridine and succinic acid were similar to α-lipoic acid which was used as a comparison drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nestler, E.J., Hyman, S.E., and Malenka, R.C., Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, New York: McGraw-Hill, 2001.

    Google Scholar 

  2. Nicotra, A., Pierucci, F., Parvez, H., and Senatori, O., Neurotox., 2004, vol. 25, nos. 1–2, pp. 155–165.

  3. Volchegorskii, I.A., Malinovskaya, N.V., Shumeleva, O.V., and Shemyakov, S.E., Byull. Eksp. Biol. Med., 2006, vol. 142, no. 8, pp. 158–166.

    Google Scholar 

  4. Duncan, J.W., Johnson, S., and Ou, X.M., Drug Disc. Ther., 2012, vol. 6, no. 3, pp. 112–122.

    CAS  Google Scholar 

  5. Goldstein, B.J., Mahadev, K., and Wu, X., Diabetes, 2005, vol. 54, no. 2, pp. 311–321.

    Article  CAS  Google Scholar 

  6. Goldstein, B.J., Mahadev, K., and Wu, X., Antioxid. Redox Signal., 2005, vol. 7, pp. 1021–1031.

    Article  CAS  Google Scholar 

  7. Evans, J.L., Maddux, B.A., and Goldfine, I.D., Antioxid. Redox Signal., 2005, vol. 7, pp. 1040–1052.

    Article  CAS  Google Scholar 

  8. Kleinridders, A., Cai, W., Cappellucci, L., Ghazarian, A., Collins, W.R., Vienberg, S.G., Pothos, E.N., and Kahn, C.R., Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 12, no. 11, pp. 3463–3468.

    Article  Google Scholar 

  9. Figlewicz, D.P., Brain Res., 2016, vol. 1645, pp. 68–70.

    Article  CAS  Google Scholar 

  10. Duncan, J.W., Johnson, S., and Ou, X.M., Drug Discoveries & Therap, vol. 6, no. 3, pp. 112–122.

  11. Gorkin, V.Z., Aminoksidazy i ikh znachenie v meditsine (Amine oxidase and their role in medicine), Moscow: Meditsina, 1981.

  12. Kodl, C.T. and Seaquist, E.R., Cognitive Dysfunction and Diabetes Mellitus,Endocrine Reviews, 2008, vol. 29, no. 4, pp. 494–511.

    Article  CAS  Google Scholar 

  13. Popova, O.A., Kudrin, V.S., Klodt, P.M., Narkevich, V.B., Nerobkova, L.N., Kapitsa, I.G., Voronina, T.A., and Val’dman, E.A., Vestn. RGMU, 2008, no. 1, pp. 54–58.

  14. Voronina, T.A., Zh. Nevrol. i Psikhiatrii, 2012, no. 12, pp. 85–90.

  15. Novikov, V.E. and Losenkova, S.O., Obzory po Klinich. Farmakol. i Lek. Terapii, 2004, vol. 3, no. 1, pp. 2–14.

  16. Volchegorskii, I.A. and Mester, N.V., Klin. Med., 2007, vol. 85, no. 2, pp. 40–45.

    CAS  Google Scholar 

  17. Volchegorskii, I.A., Miroshnichenko, I.Yu., Rassokhina, L.M., Faizullin, R.M., Malkin, M.P., Pryakhina, K.E., and Kalugina, A.V., Eksperim. i Klin.Farmakol., 2014, vol. 77, no. 4, pp. 14–20.

    CAS  Google Scholar 

  18. Volchegorskii, I.A., Rassokhina, L.M., Miroshnichenko, I.Yu., Mester, K.M., Novoselov, P.N., and Astakhova, T.V., Byull. Eksp. Biol. Med., 2010, vol. 150, no. 9, pp. 295–301.

    Google Scholar 

  19. Volchegorskii, I.A., Miroshnichenko, I.Yu., Rassokhina, L.M., Faizullin, R.M., and Pryakhina, K.E., Ros. Fiziol. Zh., 2016, vol. 102, no. 11, pp. 1312–1322.

    CAS  Google Scholar 

  20. Volchegorskii, I.A., Sinitskii, A.I., Miroshnichenko, I.Yu., and Rassokhina, L.M., Khim.-Farm. Zh., 2018, vol. 52, no. 1, pp. 3–7.

    Google Scholar 

  21. Volchegorskii, I.A., Rassokhina, L.M., and Miroshnichenko, I.Yu., Zh. Nevrol. i Psikhiatrii, 2013, vol. 113, no. 6, pp. 50–61.

  22. Volchegorskii, I.A., Miroshnichenko, I.Yu., Rassokhina, L.M., Malkin, M.P., Faizullin, R.M., Pryakhina, K.E., and Kalugina, A.V., Zh. Nevrol. i Psikhiatrii, 2015, vol. 115, no. 2, pp. 48–52.

  23. Volchegorskii, I.A., Miroshnichenko, I.Yu., Rassokhina, L.M., and Faizullin, R.M., Zh. Nevrol. i Psikhiatrii, 2016, vol. 116, no. 6, pp. 53–59.

  24. Mironov, A.N., Bunyatyan, N.D., Vasil’ev, A.N., Verstakova, O.L., Zhuravleva, M.V., Lepakhin, V.K., Korobov, N.V., Merkulov, V.A., Orekhov, S.N., Sakaeva, I.V., Uteshev, D.B., and Yavorskii, A.N., Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv (Manual on Preclinical Studies of Drugs), Moscow: Grif i K, 2012.

  25. Lenzen, S., Diabetologia, 2008, vol. 51, pp. 216–226.

    Article  CAS  Google Scholar 

  26. Volchegorskii, I.A., Dolgushin, I.I., Kolesnikov, O.L., and Tseilikman, V.E., Eksperimental’noe modelirovanie i laboratornaya otsenka adaptatsionnykh reaktsii organizma (Experimental Modeling and Laboratory Evaluation of Body Adaptation Response), Chelyabinsk: Izdatel’stvo ChGPU, 2000.

  27. Rassokhina, L.M., Extended Abstract of Doctoral (Med.) Dissertation, Chelyabinsk: YuUGMU, 2014.

  28. Glowinski, J. and Iversen, L.L., J. Neurochem., 1966, vol. 13, pp. 655–669.

    Article  CAS  Google Scholar 

  29. Huang, G., Zhu, F., Chen, Y., Chen, S., Liu, Z., Li, X., Gan, L., Zhang, L., and Yu, Y., Anal. Biochem., 2016, vol. 512, pp. 18–25.

    Article  CAS  Google Scholar 

  30. Kamyshnikov, V.S., Spravochnik po kliniko-biokhimi-cheskim issledovaniyam i laboratornoi diagnostike (Guide on Clinical-Biochemical Studies and Laboratory Diagnostics), Moscow: MEDpress-inform, 2009.

  31. Matlina, E.Sh. and Men’shikov, V.V., Klinicheskaya biokhimiya katekholaminov (Clinical Biochemistray of Catecholamines), Moscow: Meditsina, 1967.

  32. Volchegorskii, I.A., Rassokhina, L.M., and Miroshnichenko, I.Yu., Byull. Eksperim. Biol. Med., 2013, vol. 155, no. 1, pp. 63–70.

  33. Higuchi, Y., Soga, T., and Parhar, I.S., Front. Pharmacol., 2018, vol. 9, p. 1549.

    Article  CAS  Google Scholar 

  34. Paul, A., Chaker, Z., and Doetsch, F., Science, 2017, vol. 356, no. 6345, pp. 1383–1386.

    Article  CAS  Google Scholar 

  35. Volchegorskii, I.A., Shemyakov, S.E., Turygin, V.V., and Malinovskaya, N.V., Byull. Eksp. Biol. Med., 2001, vol. 132, no. 8, pp. 174–177.

    Google Scholar 

  36. Shemyakov, S.E., Byulleten’ Eksperimental’noi biologii i meditsiny, 2001, vol. 131, no. 6, p. 694.

  37. Bortolato, M., Chen, K., and Shih, J.C., Adv. Drug Del. Rev., 2008, vol. 60, nos. 13–14, pp. 1527–1533.

Download references

Funding

This study was performed as part of the state order “Pharmacophysiology and Biochemical Pharmacology of Derivatives of 3-Oxypyridine and Succinic Acid” (State registration number: AAAA-A18-118021890008-4. Registration date: February 18, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Volchegorskii.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchegorskii, I.A., Sinitskii, A.I., Miroshnichenko, I.Y. et al. Effect of 3-Oxypyridine Derivatives and Succinic Acid on the Activity of Monoamine Oxidases and the Content of Monoamines in the Hypothalamus of Rats with Alloxan-Induced Diabetes. Neurochem. J. 14, 215–226 (2020). https://doi.org/10.1134/S1819712420010201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420010201

Keywords:

Navigation