Skip to main content
Log in

The effects of antiorthostatic hypodynamia and overload on discriminant learning and monoamine exchange in the brain structures of mice

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We studied the effects of models of imponderability (Antiorthostatic Hypodynamia, AH) and overload (AH + centrifugation) on discriminant learning in mice and the concentrations of monoamines and their metabolites in several brain structures. The experimental conditions accelerated the formation of the locomotor behavioral stereotype, which underlies discriminant food learning. This was accompanied by weaker food motivation of the experimental animals, as compared to the control animals. Presumably, this effect may be related to the so-called “sharpening of attention.” This occurs due to the suppression of the executive mechanisms of locomotor and exploratory activity, which decreases afferent generalization. Analysis of the concentrations of monoamines and their metabolites in the prefrontal cortex, hypothalamus, striatum, and cerebellum revealed considerable intensification of serotonin metabolism, in contrast to catecholamines. Behavioral results are discussed in the framework of the development of a negative emotional state related to the activity of the serotonergic system of the prefrontal cortex (“decision making” which is focused on escape from the negative state) and the realization of targeted behavior (“selection of action” as acquisition of rewards or food) by neuronal networks of the striatum and cerebellum. This response is possible with weak food motivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shtemberg, A.S., Aviakosmich. Ekol. Med., 1992, vol. 26, no. 4, pp. 64–67.

    CAS  Google Scholar 

  2. Shtemberg, A.S., Aviakosmich. Ekol. Med., 1997, vol. 31, no. 2, pp. 38–43.

    CAS  Google Scholar 

  3. Grigor’yan, G.A., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 3, pp. 418–426.

    Google Scholar 

  4. Makarova, T.M., Varlinskaya, E.I., and Petrov, E.S., Zhurn. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 1989, vol. 39, no. 3, pp. 513–519.

    CAS  Google Scholar 

  5. Poshivalov, V.P., Eksperimental’naya psikhofarmakologiya agressivnogo povedeniya (Experimental Psychopharmacology of Aggressive Behavior), Leningrad: Nauka, 1986.

    Google Scholar 

  6. Shtemberg, A.S., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1982, vol. 32, no. 3, pp. 463–471.

    CAS  Google Scholar 

  7. Shtemberg, A.S., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1987, vol. 37, no. 6, pp. 1090–1098.

    CAS  Google Scholar 

  8. Ushakov, I.B., Shtemberg, A.S., and Shafirkin, A.V., Reaktivnost’ i rezistentnost’ organizma mlekopitayushchikh (Reactivity and Resistance of Mammalian Body), Moscow: Nauka, 2007.

    Google Scholar 

  9. Gorbunova, A.V., Kudrin, V.S., and Klodt, P.M., Neirokhimiya, 2006, vol. 23, no. 2, pp. 156–158.

    Google Scholar 

  10. Bazyan, A.S. and Grigor’yan, G.A., Usp. Fiziol. Nauk, 2006, vol. 37, no. 1, pp. 68–83.

    CAS  Google Scholar 

  11. Bazyan, A.S., Grigor’yan, G.A., and Ioffe, M.E., Usp. Fiziol. Nauk, 2011, vol. 42, no. 3, pp. 65–80.

    Google Scholar 

  12. Simonov, P.V., Izbrannye trudy (Selected Studies), Moscow: Nauka, 2004, vol. 1.

    Google Scholar 

  13. Frank, M.J., Scheres, A., and Sherman, S.J., Phil. Trans. R. Soc., vol. 362, pp. 1641–1654.

  14. de Visser, L. and Baars, A.M., Van’ T Klooster J., and Van Den Bos R, Frontier. Neurosci., 2011, vol. 5, pp. 1–8.

    Google Scholar 

  15. Redgrave, P., Prescott, T.J., and Garney, K., Neuroscience, 1999, vol. 89, no. 4, pp. 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  16. Stafford, T. and Gurney, K.N., Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 362, no. 1485, pp. 1671–1684.

  17. Soubrie, P., Reisine, T.D., and Glowinski, J., Neuroscience, 1984, vol. 13, pp. 605–625.

    Article  PubMed  CAS  Google Scholar 

  18. Xue, B. and Kahn, B.B., J. Physiol., 2006, vol. 574, pp. 73–83.

    Article  PubMed  CAS  Google Scholar 

  19. Barson, J.R., Morganstern, I., and Leibowitz, S.F., Physiol. Behav., 2011, vol. 104, no. 1, pp. 128–137.

    Article  PubMed  CAS  Google Scholar 

  20. Shoji, M. and Yasujima, M., Rinsho Byori, 1999, vol. 47, no. 12, pp. 1121–1127.

    PubMed  CAS  Google Scholar 

  21. Morrow, A.L., Porcu, P., Boyd, K.N., and Grant, K.A., Dialogues Clin. Neurosci., 2006, vol. 8, no. 4, pp. 463–477.

    PubMed  Google Scholar 

  22. Aston-Jones, G., Smith, R.J., Moorman, D.E., and Richardson, K.A., Neuropharmacol., 2009, vol. 56, pp. 112–121.

    Article  CAS  Google Scholar 

  23. Aston-Jones, G., Smith, R.J., Sartor, G.C., Moorman, D.E., Massi, L., Tahsili-Fahadan, P., and Richardson, K.A., Brain Res., 2010, vol. 1314, no. 1, pp. 74–90.

    Article  PubMed  CAS  Google Scholar 

  24. Diener, H.C., Dichgans, J., Guschlbauer, B., Bacher, M., Rapp, H., and Langenbach, P., Rev. Neurol. (Paris), 1990, vol. 146, pp. 555–563.

    CAS  Google Scholar 

  25. Diedrichsen, J., Verstynen, T., Lehman, S.L., and Ivry, R.B., J. Neurophysiol., 2005, vol. 93, pp. 801–812.

    Article  PubMed  Google Scholar 

  26. Arshavskii, Yu.I., Gel’fand, I.M., and Orlovskii, G.N., Mozzhechok i upravlenie ritmicheskimi dvizheniyami (Cerebellum and Control of Rhythmic Movements), Moscow: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bazyan.

Additional information

Original Russian Text © A.S. Shtemberg, V.S. Kudrin, P.M. Klodt, V.B. Narkevich, A.S. Bazyan, 2012, published in Neirokhimiya, 2012, Vol. 29, No. 4, pp. 318–326.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtemberg, A.S., Kudrin, V.S., Klodt, P.M. et al. The effects of antiorthostatic hypodynamia and overload on discriminant learning and monoamine exchange in the brain structures of mice. Neurochem. J. 6, 291–298 (2012). https://doi.org/10.1134/S1819712412030130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712412030130

Keywords

Navigation