Skip to main content
Log in

The state of the tuberoinfundibular dopaminergic system during modeling of parkinsonism in mice

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most widespread neurodegenerative diseases; it develops as a result of the death of dopaminergic (DA-ergic) neurons of the nigrostriatal system of the brain. It has been shown in autopsy material that the neurodegenerative process spreads to other populations of neurons of the peripheral and central nervous system. In PD patients the tuberoinfundibular DA-ergic system (TIDAS) undergoes degradation; however, no experimental models exist that can reproduce the combined degradation of the nitrostriatal system and the TIDAS. In this work, we analyzed the state of the TIDAS during presymptomatic and symptomatic stages of parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These stages of parkinsonism develop as a result of subthreshold and threshold degradation of the nigrostriatal DA-ergic system. To evaluate the morphofunctional state of the TIDAS, we determined: (a) the number of neurons with tyrosine hydroxylase (TH), a key enzyme of DA synthesis; (b) the sizes of the terminals of TH-positive axons; (c) the levels of TH in the neuronal somas and the terminals of axons; and (d) the contents of DA, noradrenaline, and 3,4-dihydroxyphenyl acetic acid. According to the data that was obtained during the presymptomatic stage, for the TIDAS no changes were found in all the measured parameters. During the symptomatic stage, we observed (a) a decrease in DA content by 50%; (b) a decrease in the level of TH protein in axonal terminals and an increase in neuronal somas; and (c) an increase in the turnover of DA by 149% as compared to the control. The data we obtained suggest that the functional activity of the TIDAS was insufficient; this was seen in the form of alterations of DA metabolism, a decrease in the level of synthesis, probably in axonal terminals, and compensatory acceleration of the functional cycle from synthesis to enzymatic degradation. Although no changes in the number of neurons and axons that express TH was found in the TIDAS, the question of organic degradation of the TIDAS in parkinsonism is still open because TH is a marker of not only DA-ergic neurons that degenerate in the presence of neurotoxins but also of non-DA-ergic neurons that are insensitive to neurotoxins. Thus, during experimental modeling of Parkinsonism, we observed at least the metabolic characteristics of TIDAS degradation only at the symptomatic stage of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dauer, W. and Przedborski, S., Neuron, 2003, vol. 39, pp. 889–909.

    Article  PubMed  CAS  Google Scholar 

  2. Zigmond, M.J., Neurobiol. Dis., 1997, vol. 4, pp. 247–253.

    Article  PubMed  CAS  Google Scholar 

  3. Jellinger, K.A., Mol. Chem. Neuropathol., 1991, vol. 14, pp. 153–197.

    Article  PubMed  CAS  Google Scholar 

  4. Halliday, G.M., Blumbergs, P.C., Cotton, R.G., Blessing, W.W., and Geffen, L.B., Brain Res., 1990, vol. 510, pp. 104–107.

    Article  PubMed  CAS  Google Scholar 

  5. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., and Del Tredici, K., Cell Tissue Res., 2004, vol. 318, pp. 121–134.

    Article  PubMed  Google Scholar 

  6. Chaudhuri, K.R. and Schapira, A.H., Lancet Neurol., 2009, vol. 8, pp. 464–474.

    Article  PubMed  CAS  Google Scholar 

  7. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G., Physiol. Rev., 2000, vol. 80, pp. 1523–1631.

    PubMed  CAS  Google Scholar 

  8. Ugrumov, M., in Handbook of Neurochem. and Mol. Neurobiol., Lajtha, A. and Vizi, S., Eds., Heidelberg: Springer, 2008.

    Google Scholar 

  9. Moore, R.Y., Whone, A.L., and Brooks, D.J., Neurobiol. Dis., 2008, vol. 29, pp. 381–390.

    Article  PubMed  CAS  Google Scholar 

  10. Shannak, K., Rajput, A., Rozdilsky, B., Kish, S., Gilbert, J., and Hornykiewicz, O., Brain Res., 1994, vol. 639, pp. 33–41.

    Article  PubMed  CAS  Google Scholar 

  11. Langston, J.W. and Forno, L.S., Ann. Neurol., 1978, vol. 3, pp. 129–133.

    Article  PubMed  CAS  Google Scholar 

  12. Otake, K., Oiso, Y., Mitsuma, T., Hirooka, Y., and Adachi, K., Acta Med. Hung, 1994, vol. 50, pp. 3–13.

    PubMed  CAS  Google Scholar 

  13. Bellomo, G., Santambrogio, L., Fiacconi, M., Scarponi, A.M., and Ciuffetti, G., J. Neurol., 1991, vol. 238, pp. 19–22.

    Article  PubMed  CAS  Google Scholar 

  14. Ugrumov, M.V., Khaindrava, V.G., Kozina, E.A., Kucheryanu, V.G., Bocharov, E.V., Kryzhanovsky, G.N., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Rayevsky, K.S., and Pronina, T.S., Neuroscience, 2011, vol. 181, pp. 175–188.

    Article  PubMed  CAS  Google Scholar 

  15. Paxinos, G.F. and Franklin, K., The Mouse Brain In Stereotaxic Coordinates. Second Edition., London: Academic Press, 2001.

    Google Scholar 

  16. Smolen, A.J., San Diego: Academic Press, 1990, vol. 3, pp. 208–229.

  17. Gurevich, I.B., Kozina, E.A., Myagkov, A.A., Ugrumov, M.V., and Yashina, V.V., Pattern Recognition and Image Analys, 2009, vol. 20, pp. 349–359.

    Article  Google Scholar 

  18. Behrouz, B., Drolet, R.E., Sayed, Z.A., Lookingland, K.J., and Goudreau, J.L., Neuroscience, 2007, vol. 147, pp. 592–598.

    Article  PubMed  CAS  Google Scholar 

  19. Melamed, E., Rosenthal, J., Globus, M., Cohen, O., Frucht, Y., and Uzzan, A., Eur. J. Pharmacol., 1985, vol. 114, pp. 97–100.

    Article  PubMed  CAS  Google Scholar 

  20. Sundstrom, E., Stromberg, I., Tsutsumi, T., Olson, L., and Jonsson, G., Brain Res., 1987, vol. 405, pp. 26–38.

    Article  PubMed  CAS  Google Scholar 

  21. Gibb, W.R., Lees, A.J., Jenner, P., and Marsden, C.D., Neurosci. Let., 1986, vol. 65, pp. 79–83.

    Article  CAS  Google Scholar 

  22. Lin, J.Y., Mai, L.M., and Pan, J.T., Brain Res., 1993, vol. 624, pp. 126–130.

    Article  PubMed  CAS  Google Scholar 

  23. Sandyk, R., Iacono, R.P., and Kay, S.R., Ital. J. Neurol. Sci., 1990, vol. 11, pp. 367–372.

    Article  PubMed  CAS  Google Scholar 

  24. Ershov, P.V., Ugrumov, M.V., Calas, A., Krieger, M., and Thibault, J., J. Chem. Neuroanat., 2005, vol. 30, pp. 27–33.

    Article  PubMed  CAS  Google Scholar 

  25. Storch, A., Ludolph, A.C., and Schwarz, J., J. Neural. Transm., 2004, vol. 111, pp. 1267–1286.

    Article  PubMed  CAS  Google Scholar 

  26. Uhl, G.R., Walther, D., Mash, D., Faucheux, B., and Javoy-Agid, F., Ann. Neurol., 1994, vol. 35, pp. 494–498.

    Article  PubMed  CAS  Google Scholar 

  27. Lindley, S.E., Gunnet, J.W., Lookingland, K.J., and Moore, K.E., Brain Res., 1990, vol. 506, pp. 133–138.

    Article  PubMed  CAS  Google Scholar 

  28. Lookingland, K.J., Jarry, H.D., and Moore, K.E., Brain Res., 1987, vol. 419, pp. 303–310.

    Article  PubMed  CAS  Google Scholar 

  29. Raff, M.C., Whitmore, A.V., and Finn, J.T., Science, 2002, vol. 296, pp. 868–871.

    Article  PubMed  CAS  Google Scholar 

  30. Ershov, P.V., Ugrumov, M.V., Calas, A., Krieger, M., and Thibault, J., J. Comp. Neurol., 2002, vol. 446, pp. 114–122.

    Article  PubMed  CAS  Google Scholar 

  31. Ugrumov, M.V., Melnikova, V.I., Lavrentyeva, A.V., Kudrin, V.S., and Rayevsky, K.S., Neuroscience, 2004, vol. 124, pp. 629–635.

    Article  PubMed  CAS  Google Scholar 

  32. Ziyazetdinova, G.Z., Sapronova, A.Ya., Kiyasova, V.Ya., Nanaev, A.K., Kudrin, V.S., Martina, N., Tiie, I., and Ugryumov, M.V., Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 72–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Degtyareva.

Additional information

Original Russian Text © E.A. Degtyareva, T.S. Pronina, M.V. Ugryumov, 2012, published in Neirokhimiya, 2012, Vol. 29, No. 4, pp. 311–317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degtyareva, E.A., Pronina, T.S. & Ugryumov, M.V. The state of the tuberoinfundibular dopaminergic system during modeling of parkinsonism in mice. Neurochem. J. 6, 284–290 (2012). https://doi.org/10.1134/S1819712412030051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712412030051

Keywords

Navigation