Neurochemical Journal

, Volume 5, Issue 2, pp 115–125 | Cite as

The effects of scopolamine and the nootropic drug phenotropil on rat brain neurotransmitter receptors during testing of the conditioned passive avoidance task

  • Yu. Yu. FirstovaEmail author
  • D. A. Abaimov
  • I. G. Kapitsa
  • T. A. Voronina
  • G. I. Kovalev
Experimental Articles


We studied the effects of administration of the new nootropic drug phenotropil (N-carbamoylmethyl-4-phenyl-2-pyrrolidone) at a dose of 100 mg/kg on the quantitative characteristics of dopamine (DA), serotonin (5-HT), glutamate (NMDA), GABA-A (BDZ), and acetylcholine (nACh) receptors in rats using the conditioned passive avoidance task (PAT) under normal conditions and during scopolamine-induced amnesia ex vivo. We found that the cholinolytic drug scopolamine induced a substantial increase in the density (B max) of n-choline receptors in the cortex (by 99% as compared to the control) and NMDA receptors in the hippocampus (by 93%). A single administration of phenotropil (100mg/kg, intraperitoneally) abolished the effect of scopolamine and decreased the number of nACh and NMDA receptors by 46% and 14%, respectively. Phenotropil also abolished the effect of scopolamine on the benzodiazepine receptors and dopamine D1 receptors. Scopolamine decreased the density of D1 receptors by 20% and BDZ receptors by 17%, whereas phenotropil increased the density of receptors by 16% and 25%, respectively. Phenotropil considerably increased the density of dopamine D2 and D3 receptors by 29% and 62%, respectively. Scopolamine also increased the density of D3 receptors by 44% as compared to the control. We did not find any changes in the binding characteristics of 5-HT2 receptors during scopolamine-induced amnesia or during phenotropil treatment. These results demonstrate the role of these receptors in the development of scopolamine-induced amnesia and in neurochemical mechanisms of the anti-amnestic effects of phenotropil.


phenotropil nootropic drugs scopolamine PAT dopamine serotonin acetylcholine glutamate benzodiazepines striatum frontral cortex hippocampus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhapkina, V.N., Fenotropil. Sb. St., 2007, pp. 6–14.Google Scholar
  2. 2.
    Filippova, S.Yu., Aleshina, N.V., and Stepanov, V.P., Fenotropil. Sb. St., 2007, pp. 84–87.Google Scholar
  3. 3.
    Kovalev, G.I., Akhapkina, V.I., Abaimov, D.A., and Firstova, Yu.Yu., Atmosfera. Nervnye Bolezni, 2007, no. 4, pp. 22–26.Google Scholar
  4. 4.
    Kovalev, G.I. Doctorate (Med.) Dissertation [in Russian], Moscow: NII farmakologii im. V.V. Zakusova, 1993.Google Scholar
  5. 5.
    Zhao, X., Kuryatov, A., Lindstrom, J., Yah, J., and Narahashi, T., Mol. Pharmacol., 2001, vol. 59(4), pp. 674–683.PubMedGoogle Scholar
  6. 6.
    Firstova, Yu.Yu., Cand. Sci. (Biol.) Dissertation [in Russian], Moscow: NII farmakologii im. V.V. Zakusova, 2008.Google Scholar
  7. 7.
    Kovalev, G.I. and Prikhozhan, A.V., Farmakologiya nootropov. Eksperimental’noe i klinicheskoe izuchenie. Val’dman A.V., Voronina T.A., Eds., Moscow, 1989, pp. 99–104.Google Scholar
  8. 8.
    Kovalev, G., Kudrin, V., Zharikov, S., Pogorelov, V., Bogdanov, M., and Guinetdinov, R., Abstr. of Meeting Dopamine-92, Italy, 1992, p. 29.Google Scholar
  9. 9.
    Copani, A., Genezzani, A.A., Aleppo, G., Casadona, G., and Canonico, P.L., J. Neurochem., 1992, vol. 58, pp. 1199–1204.PubMedCrossRefGoogle Scholar
  10. 10.
    Narahashi, T., Moriguchi, S., Zhao, X., Marszalec, W., and Yeh, J.Z., Biol. Pharm. Bull., 2004, vol. 27(11), pp. 1701–1706.PubMedCrossRefGoogle Scholar
  11. 11.
    Voronina, T.A. and Ostrovskaya, R.U., in Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv (Manual on Experimental (Preclinical) Studies of New Pharmacological Compounds), Moscow, 2000, pp. 153–158.Google Scholar
  12. 12.
    Glowinski, J. and Iversen, L., J. Neurochem., 1966, vol. 13(8), pp. 655–669.PubMedCrossRefGoogle Scholar
  13. 13.
    Alexander, S.P., Mathie, A., and Peters, J.A., Guide to Receptors and Channels. BJP, 2006, vol. 147, no. 3, p. 146.Google Scholar
  14. 14.
    Sun, W., Ginovart, N., Ko, F., Seeman, P., and Kapur, S., Mol. Pharmacol., 2003, vol. 63(2), pp. 456–462.PubMedCrossRefGoogle Scholar
  15. 15.
    Romano, C. and Goldstein, A., Science, 1980, vol. 210, pp. 647–650.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou, L.M., Gu, Z.Q., Costa, A.M., Yamada, K.A., and Manssone, P.E., J. Pharmacol. Exp. Ther., 1997, vol. 280, pp. 422–427.PubMedGoogle Scholar
  17. 17.
    Andersen, P.H., Gronvald, F.C., and Jansen, J.A., Life Sci., 1985, vol. 37, pp. 1971–1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Levesque, D., Diaz, J., Pilon, C., Martres, M.P., Giros, B., Souil, E., Schott, D., Morgat, J.L., Schwartz, J.C., and Sokoloff, P., Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 8155–8159.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen, S.A. and Mller, W.E., Pharmacol., 1993, vol. 47, pp. 217–222.CrossRefGoogle Scholar
  20. 20.
    Pilch, H. and Mller, W.E., Psychopharmacol., 1988, vol. 94, pp. 74–78.CrossRefGoogle Scholar
  21. 21.
    Pepeu, G. and Sprignoli, G., Prog. Neuropsychopharmacol. Biol. Psychiatry, 1989, vol. 13, pp. 77–88.CrossRefGoogle Scholar
  22. 22.
    Pepeu, G., Sprignoli, G., and Goivannini, M.G., Pharmacopsychiatry, 1999, vol. 22(2), pp. 116–119.CrossRefGoogle Scholar
  23. 23.
    Yamada, K., Tanaka, T., and Mamiya, T.I., Brit. J. Pharmacol., 1999, vol. 126(1), pp. 235–244.CrossRefGoogle Scholar
  24. 24.
    Scheuer, K., Rostock, A., and Bartsh, R., Pharmacopsychiatry, 1999, vol. 32, pp. 10–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Memo, M., Missale, C., Trivelli, L., and Spano, P.F., Eur. J. Pharmacol., 1988, vol. 149(3), pp. 367–370.PubMedCrossRefGoogle Scholar
  26. 26.
    Stewart, M.G., Kabai, P., Harrison, E., Steele, R.J., Kossut, M., and Csillag, A., Neuroscience, 1996, vol. 70(1), pp. 7–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Nitta, A., Katono, Y., Itoh, A., Hasegawa, T., and Nabeshima, T., Pharmacol. Biochem. Behav., 1994, vol. 49(4), pp. 8072–8080.CrossRefGoogle Scholar
  28. 28.
    Dubrovina, N.I., Neurosci. Behav. Physiol., 2006, vol. 36, no. 6, pp. 679–684.PubMedCrossRefGoogle Scholar
  29. 29.
    Aramakis, V.B. and Metherate, R., J. Neurosci., 1998, vol. 18, pp. 257–263.Google Scholar
  30. 30.
    Gould, Th.J. and Lewis, M.C., Learn. Mem, 2005, vol. 12, pp. 389–398.PubMedCrossRefGoogle Scholar
  31. 31.
    Lloyd, G.K. and Williams, M., J. Pharmacol. Exp. Ther., 2000, vol. 292(2), pp. 461–467.PubMedGoogle Scholar
  32. 32.
    Mohler, H., Fritschy, J.M., and Rudolph, U., J. Pharmacol. Exp. Ther., 2002, vol. 300(1), pp. 2–8.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Yu. Yu. Firstova
    • 1
    • 2
    Email author
  • D. A. Abaimov
    • 1
  • I. G. Kapitsa
    • 1
  • T. A. Voronina
    • 1
  • G. I. Kovalev
    • 1
  1. 1.Zakusov Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations