Skip to main content
Log in

Short-term and long-term effects of diazepam on the memory for discrimination and generalization of scopolamine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Benzodiazepines are among the most widely prescribed and misused psychopharmaceutical drugs. Although they are well-tolerated, they are also capable of producing amnestic effects similar to those observed after pharmacological or organic cholinergic dysfunction. To date, the effect of benzodiazepine diazepam on the memory for discrimination of anticholinergic drugs has not been reported. The aim of the present study was to analyze the immediate and long-term effects of diazepam on a drug discrimination task with scopolamine. Male Wistar rats were trained to discriminate between scopolamine and saline administration using a two-lever discrimination task. Once discrimination was acquired, the subjects were divided into three independent groups, (1) control, (2) diazepam, and (3) diazepam chronic administration (10 days). Subsequently, generalization curves for scopolamine were obtained. Additionally, the diazepam and control groups were revaluated after 90 days without having been given any other treatment. The results showed that diazepam produced a significant reduction in the generalization gradient for scopolamine, indicating an impairment of discrimination. The negative effect of diazepam persisted even 90 days after drug had been administered. Meanwhile, the previous administration of diazepam for 10 days totally abated the generalization curve and the general performance of the subjects. The results suggest that diazepam affects memory for the stimulus discrimination of anticholinergic drugs and does so persistently, which could be an important consideration during the treatment of amnesic patients with benzodiazepines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguayo-DelCastillo A, Vélazquez-Martínez DN, Sánchez-Castillo H, Casasola C (2013) Dorsolateral frontal cortex and peripheral muscarinic receptors participation in the discriminative stimulus properties of scopolamine in rats. Pharmacol Biochem Behav 109:44–49

    Article  CAS  PubMed  Google Scholar 

  • Barker MJ, Greenwood KM, Jackson M, Crowe SF (2004a) Cognitive effects of long-term benzodiazepine use: a meta-analysis. CNS Drugs 18(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Barker MJ, Greenwood KM, Jackson M, Crowe SF (2004b) Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis. Arch of Clin Neuropsychol 19(1):437–454

    Article  Google Scholar 

  • Beracochea D (2006) Anterograde and retrograde effects of benzodiazepines on memory. ScientificWordJournal 6:1460–1465

    Article  CAS  Google Scholar 

  • Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu La Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54(2):99–105

    Article  CAS  PubMed  Google Scholar 

  • Bienkowski P, Iwinska K, Stefanski R, Kostowski W (1997) Discriminative stimulus properties of ethanol in the rat: differential effects of selective and nonselective benzodiazepine receptor agonists. Pharmacol Biochem Behav 58(4):969–973

    Article  CAS  PubMed  Google Scholar 

  • Borde N, Jaffard R, Béracochéa D (1998) Effects of chronic alcohol consumption or diazepam administration on item recognition and temporal ordering in a spatial working memory task in mice. Eur J Neurosci 10(7):2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Buffett-Jerrott SE, Stewart SH (2002) Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des 8(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Cain DP, Ighanian K, Boon F (2000) Individual and combined manipulation of muscarinic, NMDA, and benzodiazepine receptor activity in the water maze task: implications for a rat model of Alzheimer dementia. Behav Brain Res 111(1–2):125–137

    Article  CAS  PubMed  Google Scholar 

  • Calixto E (2016) GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 313:57–72

    Article  CAS  PubMed  Google Scholar 

  • Casasola C, Mejía-Gervacio S, Cruz-Pérez M, Sánchez-Castillo H, Velázquez-Martínez DN (2007) Participation of the dorsal hippocampus in stimulus discrimination with scopolamine. Brain Res 1178(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC, Koek W (1995) Empirical evidence that the state dependence and drug discrimination paradigms can generate different outcomes. Psychopharmacology 120:272–279

    Article  CAS  PubMed  Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 22(13):5572–5580

    CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) Involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. Adv Biochem Psychopharmacol 14:113–130

    CAS  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Blüthmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc Natl Acad Sci U S A 99(13):8980–8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanesi LB, Ferreira R, Cabral A, Castilho VM, Brandão ML, Nobre MJ (2007) Brainstem areas activated by diazepam withdrawal as measured by Fos-protein immunoreactivity in rats. Brain Res 1166:35–46

    Article  CAS  PubMed  Google Scholar 

  • Frey JM, Mintzer MZ, Rush CR, Griffiths RR (1998) Buspirone is differentiated from diazepam in humans using a three-response drug discrimination procedure. Psychopharmacology 138(1):16–26

    Article  CAS  PubMed  Google Scholar 

  • Gafford GM, Parsons RG, Helmstetter FJ (2005) Effects of post-training hippocampal injections of midazolam on fear conditioning. Learn Mem 12(6):573–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Gielen MC, Lumb MJ, Smart TG (2012) Benzodiazepines modulate GABAA receptors by regulating the preactivation step after GABA binding. J Neurosci 32(17):5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Golombok S, Moodley P, Lader M (1988) Cognitive impairment in long-term benzodiazepine users. Psychol Med 18:365–374

    Article  CAS  PubMed  Google Scholar 

  • Gorenstein C, Bernik MA, Pompéia S (1994) Differential acute psychomotor and cognitive effects of diazepam on long-term benzodiazepine users. Int Clin Psychopharmacol 9(3):145–153

    Article  CAS  PubMed  Google Scholar 

  • Gunther U, Benson J, Benke D, Fritschy JM, Reyes G et al (1995) Benzodiazepine insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 92:7749–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haefely W, Kulcsár A, Möhler H, Pieri L, Polc P, Schaffner R (1975) Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 14:131–151

    CAS  Google Scholar 

  • Hogan JB, Hodges DB Jr, Lelas S, Gilligan PJ, McElroy JF, Lindner MD (2005) Effects of CRF1 receptor antagonists and benzodiazepines in the Morris water maze and delayed nonmatching to position tests. Psychopharmacology 178(4):410–419

    Article  CAS  PubMed  Google Scholar 

  • Joksimović S, Divljaković J, Van Linn ML, Varagic Z, Brajković G, Milinković MM, Yin W, Timić T, Sieghart W, Cook JM, Savić MM (2013) Benzodiazepine-induced spatial learning deficits in rats are regulated by the degree of modulation of α1 GABAA receptors. Eur Neuropsychopharmacol 23(5):390–399

    Article  PubMed  Google Scholar 

  • Julien RM (2001) A primer of drug action: a concise, nontechnical guide to the actions, uses and side effects of psychoactive drugs, 9th edn. Worth Publishers, New York

    Google Scholar 

  • Jung M, Perio A, Worms P, Biziere K (1988) Characterization of the scopolamine stimulus in rats. Psychopharmacology 95:195–199

    CAS  PubMed  Google Scholar 

  • Kaminski BJ, Van Linn ML, Cook JM, Yin W, Weerts EM (2013) Effects of the benzodiazepine GABAA α1-preferring ligand, 3-propoxy-β-carboline hydrochloride (3-PBC), on alcohol seeking and self-administration in baboons. Psychopharmacology 227(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Kelley BM, Porter JH (1997) The role of muscarinic cholinergic receptors in the discriminative stimulus properties of clozapine in rats. Pharmacol Biochem Behav 57:707–719

    Article  CAS  PubMed  Google Scholar 

  • Kelley BM, Porter JH, Varvel SA (1995) Mianserin as a discriminative stimulus in rats: asymmetrical cross-generalization with scopolamine. Psychopharmacology 120:491–493

    Article  CAS  PubMed  Google Scholar 

  • Kirk IJ, Mackay JC (2003) The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks. Cortex 39(4–5):993–1008

    Article  PubMed  Google Scholar 

  • Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci U S A 93(24):13541–13546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manchikanti L (2007) National drug control policy and prescription drug abuse: facts and fallacies. Pain Physician 3:399–424

    Google Scholar 

  • Maubach KA, Martin K, Choudhury HI, Seabrook GR (2004) Triazolam suppresses the induction of hippocampal long-term potentiation. Neuroreport 15(7):1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Middendorp SJ, Hurni E, Schönberger M, Stein M, Pangerl M, Trauner D, Sigel E (2014) Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors. ACS Chem Biol 9(8):1846–1853

    Article  CAS  PubMed  Google Scholar 

  • Milić M, Timić T, Joksimović S, Biawat P, Rallapalli S, Divljaković J, Radulović T, Cook JM, Savić MM (2013) PWZ-029, an inverse agonist selective for α5 GABAA receptors, improves object recognition, but not water-maze memory in normal and scopolamine-treated rats. Behav Brain Res 241:206–213

    Article  PubMed  Google Scholar 

  • Mintzer MZ, Griffiths RR (2003a) Lorazepam and scopolamine: a single-dose comparison of effects on human memory and attentional processes. Exp Clin Psychopharmacol 11(1):56–72

    Article  CAS  PubMed  Google Scholar 

  • Mintzer MZ, Griffiths RR (2003b) Triazolam-amphetamine interaction: dissociation of effects on memory versus arousal. J Psychopharmacol 17(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Mohler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Togashi H, Kojima T, Matsumoto M, Ohashi S, Ueno K, Yoshioka M (2001) Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo. Pharmacol Biochem Behav 69(3–4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26(4):233–242

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Torres Z, del Río-Portilla Y, Corsi-Cabrera M (2011) Diazepam-induced changes in EEG oscillations during performance of a sustained attention task. J Clin Neurophysiol 28(4):394–399

    PubMed  Google Scholar 

  • Nader K, Einarsson EO (2010) Memory reconsolidation: an update. Ann N Y Acad Sci 1191:27–41

    Article  PubMed  Google Scholar 

  • NOM-062-Z00-1999: NORMA Oficial Mexicana. Technical specifications for the production, care and use of laboratory animals (2001). Diario Oficial de la Federación 22 de agosto de 2001

  • Olivier H, Fitz-Gerald MJ, Babiak B (1998) Benzodiazepines revisited. J La State Med Soc 150(10):483–485

    CAS  PubMed  Google Scholar 

  • Rammsayer TH, Rodewald S, Groh D (2000) Dopamine-antagonistic, anticholinergic, and GABAergic effects on declarative and procedural memory functions. Brain Res Cogn Brain Res 9(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum JF (2005) Attitudes toward benzodiazepines over years. J Clin Psychiatry 66(Suppl 2):4–8

    PubMed  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific g-aminobutyric acidA receptor subtypes. Nature 401(6755):796–800

    Article  CAS  PubMed  Google Scholar 

  • Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    Article  CAS  PubMed  Google Scholar 

  • Saarelainen L, Taipale H, Koponen M, Tanskanen A, Tolppanen AM, Tiihonen J, Hartikainen S (2015) The incidence of benzodiazepine and related drug use in persons with and without Alzheimer's disease. J Alzheimers Dis 49(3):809–818

    Article  Google Scholar 

  • Salvatierra NA, Torre RB, Arce A (1997) Learning and novelty induced increase of central benzodiazepine receptors from chick forebrain, in a food discrimination task. Brain Res 757(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Savić MM, Milinković MM, Rallapalli S, Clayton T Sr, Joksimović S, Van Linn M, Cook JM (2009) The differential role of alpha1- and alpha5-containing GABA(A) receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats. Int J Neuropsychopharmacol 12(9):1179–1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Savić MM, Obradovic DI, Ugresic ND, Bokohjic DR (2005) Memory effects of benzodiazepines: memory stages and types versus binding-site subtypes. Neural Plast 12(4):289–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaife JC, Hou RH, Samuels ER, Baqui F, Langley RW, Bradshaw CM, Szabadi E (2007) Diazepam-induced disruption of classically-conditioned fear-potentiation of late-latency auditory evoked potentials is prevented by flumazenil given before, but not after, CS/US pairing. J Psychopharmacol 21(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Silva AF, Sousa DS, Medeiros AM, Macêdo PT, Leão AH, Ribeiro AM, Izídio GS, Silva RH (2016) Sex and estrous cycle influence diazepam effects on anxiety and memory: possible role of progesterone. Prog Neuro-Psychopharmacol Biol Psychiatry 70:68–76

    Article  CAS  Google Scholar 

  • Sokolic L, McGregor IS (2007) Benzodiazepines impair the acquisition and reversal of olfactory go/no-go discriminations in rats. Behav Neurosci 121(3):527–534

    Article  CAS  PubMed  Google Scholar 

  • Vinkers CH, Olivier B (2012) Mechanisms underlying tolerance after long-term benzodiazepine use: a future for subtype-selective GABA(A) receptor modulators? Adv Pharmacol Sci 2012:416864

    PubMed  PubMed Central  Google Scholar 

  • Wiley JL, Balster RL (2004) Effects of modulators of N-methyl-D-aspartate receptor-mediated neurotransmission on diazepam discrimination in rats. Life Sci 75(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Woods JH, Katz JL, Winger G (1992) Benzodiazepine use, abuse and consequences. Pharmacol Rev 44:151–134

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Casasola-Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casasola-Castro, C., Weissmann-Sánchez, L., Calixto-González, E. et al. Short-term and long-term effects of diazepam on the memory for discrimination and generalization of scopolamine. Psychopharmacology 234, 3083–3090 (2017). https://doi.org/10.1007/s00213-017-4692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4692-8

Keywords

Navigation