Skip to main content
Log in

Thermoelectric Properties of BeO and MgO Monolayers from First-Principles Calculations

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

First-principles calculations based on density functional theory were used to examine the thermoelectric characteristics of BeO and MgO monolayers in the current study. The energy gap range of these two monolayers reveals the insulating properties of BeO and the semiconductor properties of MgO which is in agreement with those of the previously reported results. Following the band structure and related structure parameters the BoltzTrap method was used to determine the electronic transport coefficients based on Boltzmann transport theory. Calculations relating to thermoelectric characteristics are found in this perspective, including those relating to the Seebeck coefficient, the electrical conductivity, the electronic thermal conductivity, electron heat capacity, Hall coefficient, magnetic susceptibility, and figure of merit The crystal structure, internal energy, and electronegativity all have an impact on the characteristics of heat transport since there is a possibility of variable atomic diameters and the different in electron localization function. The MgO monolayer has a somewhat higher figure of merit than BeO due to MgO’s higher electron conductivity in comparison to BeO and its lower electron thermal conductivity values. The new findings can provide a fundamental understanding of thermoelectric transport and related applications for both BeO and MgO monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

REFERENCES

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, vol. 306, pp. 666–669; https://doi.org/10.1115/1.1572903

    Article  ADS  Google Scholar 

  2. Shayeganfar, F., Vasu, K.S., Nair, R.R., Peeters, F.M., and Neek-Amal, M., Monolayer Alkali and Transition-Metal Monoxides: MgO, CaO, MnO, and NiO, Phys. Rev. B, 2017, vol. 95, p. 144109; https://doi.org/10.1103/PhysRevB.95.144109

    Article  ADS  Google Scholar 

  3. Akinwande, D., Brennan, C.J., Bunch, J.S., Egberts, P., Felts, J.R., Gao, H., Huang, R., Kim, J.S., Li, T., Li, Y., and Liechti, K.M., A Review on Mechanics and Mechanical Properties of 2D Materials—Graphene and Beyond, Extreme Mech. Lett., 2017, vol. 13, pp. 42–77; https://doi.org/10.1016/ j.eml.2017.01.008

    Article  Google Scholar 

  4. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci., 2005, vol. 102, pp. 10451–10453; https://doi.org/10.1073/pnas.0502848102

    Article  ADS  Google Scholar 

  5. Xiao, Y., Zhou, M., Zeng, M., and Fu, L., Atomic-Scale Structural Modification of 2D Materials, Adv. Sci., 2019, vol. 6, p. 1801501; https://doi.org/10.1002/advs.201801501

    Article  Google Scholar 

  6. Abdullah, N.R., Abdullah, B.J., Tang, C.S., and Gudmundsson, V., Properties of BC6N Monolayer Derived by First-Principle Computation: Influences of Interactions between Dopant Atoms on Thermoelectric and Optical Properties, Mater. Sci. Semicond. Process., 2021, vol. 135, p. 106073; https://doi.org/10.1016/j.mssp.2021.106073

    Article  Google Scholar 

  7. Abdullah, N.R., Abdullah, B.J., and Gudmundsson, V., Electronic and Optical Properties of Metallic Nitride: A Comparative Study between the MN (M = Al, Ga, In, Tl) Monolayers, Solid State Commun., 2022, vol. 346, p. 114705; https://doi.org/10.1016/j.ssc.2022.114705

    Article  Google Scholar 

  8. Balan, A.P., Puthirath, A.B., Roy, S., Costin, G., Oliveira, E.F., Saadi, M.A.S.R., Sreepal, V., Friedrich, R., Serles, P., Biswas, A., and Iyengar, S.A., Non-Van der Waals Quasi-2D Materials; Recent Advances in Synthesis, Emergent Properties and Applications, Mater. Today, 2022, vol. 58, pp. 164–200; https://doi.org/10.1016/j.mattod.2022.07.007

    Article  Google Scholar 

  9. Hu, R., Liao, G., Huang, Z., Qiao, H., Liu, H., Shu, Y., Wang, B., and Qi, X., Recent Advances of Monoelemental 2D Materials for Photocatalytic Applications, J. Hazard. Mater., 2021, vol. 405, p. 124179; https://doi.org/10.1016/j.jhazmat.2020.124179

    Article  Google Scholar 

  10. Mak, K.F. and Shan, J., Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides, Nat. Photon., 2016, vol. 10, pp. 216–226; https://doi.org/10.1038/nphoton.2015.282

    Article  ADS  Google Scholar 

  11. Sangwan, V.K., Arnold, H.N., Jariwala, D., Marks, T.J., Lauhon, L.J., and Hersam, M.C., Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors, Nano Lett., 2013, vol. 13, pp. 4351–4355; https://doi.org/10.1021/nl402150r

    Article  ADS  Google Scholar 

  12. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., and Le Lay, G., Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett., 2012, vol. 108, p. 155501; https://doi.org/10.1103/PhysRevLett.108.155501

    Article  ADS  Google Scholar 

  13. Mannix, A.J., Zhang, Z., Guisinger, N.P., Yakobson, B.I., and Hersam, M.C., Borophene as a Prototype for Synthetic 2D Materials Development, Nat. Nanotechnol., 2018, vol. 13, pp. 444–450; https://doi.org/10.1038/s41565-018-0157-4

    Article  ADS  Google Scholar 

  14. Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., and Goldberger, J.E., Stability and Exfoliation of Germanane: A Germanium Graphane Analogue, ACS Nano, 2013, vol. 7, pp. 4414–4421; https://doi.org/10.1021/nn4009406

    Article  Google Scholar 

  15. Zhu, F.F., Chen, W.J., Xu, Y., Gao, C.L., Guan, D.D., Liu, C.H., Qian, D., Zhang, S.C., and Jia, J.F., Epitaxial Growth of Two-Dimensional Stanene, Nat. Mater., 2015, vol. 14, pp. 1020–1025; https://doi.org/10.1038/nmat4384

    Article  ADS  Google Scholar 

  16. Duman, S., Sütlü, A., Bağcı, S., Tütüncü, H.M., and Srivastava, G.P., Structural, Elastic, Electronic, and Phonon Properties of Zinc-Blende and Wurtzite BeO, J. Appl. Phys., 2009, vol. 105, p. 033719; https://doi.org/10.1063/1.3075814

    Article  ADS  Google Scholar 

  17. Joshi, K.B., Jain, R., Pandya, R.K., Ahuja, B.L., and Sharma, B.K., Compton Profile Study of Bonding in BeO, J. Chem. Phys., 1999, vol. 111, pp. 163–167; https://doi.org/10.1063/1.479262

    Article  ADS  Google Scholar 

  18. Kumar, P., Rajput, K., and Roy, D.R., First-Principles Calculations to Investigate Structural, Elastic, Electronic, and Thermoelectric Properties of Monolayer and Bulk Beryllium Chalcogenides, Chem. Phys., 2022, vol. 562, p. 111660; https://doi.org/10.1016/j.chemphys.2022.111660

    Article  Google Scholar 

  19. Zheng, H., Li, X.B., Chen, N.K., Xie, S.Y., Tian, W.Q., Chen, Y., Xia, H., Zhang, S.B., and Sun, H.B., Monolayer II–VI Semiconductors: A First-Principles Prediction, Phys. Rev. B., 2015, vol. 92, p. 115307; https://doi.org/10.1103/PhysRevB.92.115307

    Article  ADS  Google Scholar 

  20. Luo, B., Yao, Y., Tian, E., Song, H., Wang, X., Li, G., Xi, K., Li, B., Song, H., and Li, L., Graphene-Like Monolayer Monoxides and Monochlorides, Proc. Natl. Acad. Sci., 2019, vol. 116, pp.17213–17218; https://doi.org/10.1073/pnas.1906510116

    Article  ADS  Google Scholar 

  21. Abdullah, N.R., Abdullah, B.J., Tang, C.S., and Gudmundsson, V., Enhanced Ultraviolet Absorption in BN Monolayers Caused by Tunable Buckling, Mater. Sci. Eng. B, 2023, vol. 288, p. 116147; https://doi.org/10.1016/j.mseb.2022.116147

    Article  Google Scholar 

  22. Abdullah, B.J., Azeez, Y.H., and Abdullah, N.R., A First-Principles Study on Electronic Structure, Optical and Thermal Properties of BeX (X = C, N, and O) Monolayers, Solid State Commun., 2023, vol. 361, p. 115080; https://doi.org/10.1016/j.ssc.2023.115080

    Article  Google Scholar 

  23. Mortazavi, B., Shojaei, F., Rabczuk, T., and Zhuang, X., High Tensile Strength and Thermal Conductivity in BeO Monolayer: A First-Principles Study, FlatChem, 2021, vol. 28, p. 100257; https://doi.org/10.1016/j.flatc.2021.100257

    Article  Google Scholar 

  24. Wu, P., Huang, M., Cheng, W., and Tang, F., First-Principles Study of B, C, N, and F Doped Graphene-Like MgO Monolayer, Physica E Low Dimens. Syst. Nanostruct., 2016, vol. 81, pp. 7–13; https://doi.org/10.1016/j.physe.2016.02.009

    Article  ADS  Google Scholar 

  25. Akhtar, A., Pilevarshahri, R., and Benam, M.R., Investigating and Comparison of Electronic and Optical Properties of MgO Nanosheet in (100) and (111) Structural Directions Based on the Density Functional Theory, Phys. B: Condens. Matter, 2016, vol. 502, pp. 61–67; https://doi.org/10.1016/ j.physb.2016.08.027

    Article  ADS  Google Scholar 

  26. Reinelt, M., Allouche, A., Oberkofler, M., and Linsmeier, C., Retention Mechanisms and Binding States of Deuterium Implanted into Beryllium, New J. Phys., 2009, vol. 11, p. 043023; DOI:10.1088/1367-2630/11/4/043023

    Article  ADS  Google Scholar 

  27. Zhang, H., Holbrook, M., Cheng, F., Nam, H., Liu, M., Pan, C.R., West, D., Zhang, S., Chou, M.Y., and Shih, C.K., Epitaxial Growth of Two-Dimensional Insulator Monolayer Honeycomb BeO, ACS Nano, 2021, vol. 15, pp. 2497–2505; https://doi.org/10.1021/acsnano.0c06596

    Article  Google Scholar 

  28. Matsuzaki, K., Hosono, H., and Susaki, T., Layer-by-Layer Epitaxial Growth of Polar MgO (111) Thin Films, Phys. Rev. B, 2010, vol. 82, p. 033408; https://doi.org/10.1103/PhysRevB.82.033408

    Article  ADS  Google Scholar 

  29. Li, Z., Ciobanu, C.V., Hu, J., Palomares-Baez, J.P., Rodrguez-Lãpez, J.L., and Richards, R., Experimental and DFT Studies of Gold Nanoparticles Supported on MgO (111) Nano-Sheets and Their Catalytic Activity, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 2582–2589; https://doi.org/10.1039/ C0CP01820A

    Article  Google Scholar 

  30. Kamarulzaman, N., Chayed, N.F., Badar, N., Kasim, M.F., Mustaffa, D.T., Elong, K., Rusdi, R., Oikawa, T., and Furukawa, H., Band Gap Narrowing of 2-D Ultra-Thin MgO Graphene-Like Sheets, ECS J. Solid State Sci. Technol., 2016, vol. 5, p. Q3038; DOI:10.1149/2.0081611jss

    Article  Google Scholar 

  31. Thomele, D., Baumann, S.O., Schneider, J., Sternig, A.K., Shulda, S., Richards, R.M., Schwab, T., Zickler, G.A., Bourret, G.R., and Diwald, O., Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures, Cryst. Growth Des., 2021, vol. 21, pp. 4674–4682; https://doi.org/10.1021/acs.cgd.1c00535

    Article  Google Scholar 

  32. Zhu, K., Hua, W., Deng, W., and Richards, R.M., Preparation of MgO Nanosheets with Polar (111) Surfaces by Ligand Exchange and Esterification–Synthesis, Structure, and Application as Catalyst Support, Eur. J. Inorg. Chem., 2012, vol. 2012, pp. 2869–2876; https://doi.org/10.1002/ejic.201200052

    Article  Google Scholar 

  33. Qian, B., Zhang, J., Zhou, S., Lu, J., Liu, Y., Dai, B., Liu, C., Wang, Y., Wang, H., and Zhang, L., Synthesis of (111) Facet-Engineered MgO Nanosheet from Coal Fly Ash and Its Superior Catalytic Performance for High-Temperature Water Gas Shift Reaction, Appl. Catal. A: Gen., 2021, vol. 618, p. 118132; https://doi.org/10.1016/j.apcata.2021.118132

    Article  Google Scholar 

  34. Liu, P., Abdala, P.M., Goubert, G., Willinger, M.G., and Copéret, C., Ultrathin Single Crystalline MgO (111) Nanosheets, Angew. Chem., Int. Ed. Engl., 2021, vol. 60, pp. 3254–3260; https://doi.org/ 10.1002/anie.202013196

    Article  Google Scholar 

  35. Zhao, H., Zhu, Y., Li, F., Hao, R., Wang, S., and Guo, L., A Generalized Strategy for the Synthesis of Large-Size Ultrathin Two-Dimensional Metal Oxide Nanosheets, Angew. Chem., Int. Ed., 2017, vol. 56, pp. 8766–8770; https://doi.org/10.1002/anie.201703871

    Article  Google Scholar 

  36. Wang, F., Ta, N., and Shen, W., MgO Nanosheets, Nanodisks, and Nanofibers for the Meerwein–Ponndorf–Verley Reaction, Appl. Catal. A: Gen., 2014, vol. 475, pp. 76–81; https://doi.org/10.1016/ j.apcata.2014.01.026

    Article  Google Scholar 

  37. Snyder, G.J. and Toberer, E.S., Complex Thermoelectric Materials, Nat. Mater., 2008, vol. 7, pp.105–114; https://doi.org/10.1038/nmat2090

    Article  ADS  Google Scholar 

  38. Müchler, L., Casper, F., Yan, B., Chadov, S., and Felser, C., Topological Insulators and Thermoelectric Materials, Phys. Status Solidi—Rapid Res. Lett., 2013, vol. 7, pp. 91–100; https://doi.org/10.1002/ pssr.201206411

    Article  ADS  Google Scholar 

  39. Ding, G., Hu, Y., Li, D., and Wang, X., A Comparative Study of Thermoelectric Properties between Bulk and Monolayer SnSe, Results Phys., 2019, vol. 15, p. 102631; https://doi.org/10.1016/j.rinp.2019.102631

    Article  Google Scholar 

  40. Abdullah, N.R., Abdullah, B.J., and Gudmundsson, V., DFT Study of Tunable Electronic, Magnetic, Thermal, and Optical Properties of a Ga2Si6 Monolayer, Solid State Sci., 2022, vol. 125, p. 106835; https://doi.org/10.1016/j.solidstatesciences.2022.106835

    Article  Google Scholar 

  41. Xia, C., Li, W., Ma, D., and Zhang, L., Electronic and Thermal Properties of Monolayer Beryllium Oxide from First Principles, Nanotechnol., 2020, vol. 31, p. 375705; DOI:10.1088/1361-6528/ab97d0

    Article  ADS  Google Scholar 

  42. Yeganeh, M. and Baghsiyahi, F.B., Vibrational and Thermodynamical Properties of MgO Nanosheets of (111) and (100) Facets by Density Functional Theory, J. Electron. Mater., 2019, vol. 48, pp. 3816–3822; https://doi.org/10.1007/s11664-019-07128-3

    Article  ADS  Google Scholar 

  43. Asl, M.A., Benam, M.R., Shahri, R.P., Feyzi, A., and Kafi, F., Two-Dimensional Quantum Confinement Effects on Thermoelectric Properties of MgO Monolayers: A First Principle Study, Micro Nanostruct., 2022, vol. 163, p. 107134; https://doi.org/10.1016/j.spmi.2021.107134

    Article  Google Scholar 

  44. Bafekry, A., Faraji, M., Hoat, D.M., Shahrokhi, M., Fadlallah, M.M., Shojaei, F., Feghhi, S.A.H., Ghergherehchi, M., and Gogova, D., MoSi2N4 Single-Layer: A Novel Two-Dimensional Material with Outstanding Mechanical, Thermal, Electronic and Optical Properties, J. Phys. D: Appl. Phys., 2021, vol. 54, p. 155303; DOI:10.1088/1361-6463/abdb6b

    Article  ADS  Google Scholar 

  45. Abdullah, N.R., Mohammed, G.A., Rashid, H.O., and Gudmundsson, V., Electronic, Thermal, and Optical Properties of Graphene Like SiC\(_{x}\) Structures: Significant Effects of Si Atom Configurations, Phys. lett., A , 2020, vol. 384, p. 126578; https://doi.org/10.1016/j.physleta.2020.126578

    Article  Google Scholar 

  46. Wang, Q., Han, L., Wu, L., Zhang, T., Li, S., and Lu, P., Strain Effect on Thermoelectric Performance of InSe Monolayer, Nanoscale Res. Lett., 2019, vol. 14, pp. 1–9; https://doi.org/10.1186/s11671-019-3113-9

    Article  ADS  Google Scholar 

  47. Bera, J. and Sahu, S., Strain Induced Valley Degeneracy: A Route to the Enhancement of Thermoelectric Properties of Monolayer WS2, RSC Adv., 2019, vol. 9, pp. 25216–25224; DOI:10.1039/C9RA04470A

    Article  ADS  Google Scholar 

  48. Xiong, R., Sa, B., Miao, N., Li, Y.L., Zhou, J., Pan, Y., Wen, C., Wu, B., and Sun, Z., Structural Stability and Thermoelectric Property Optimization of Ca2Si, RSC Adv., 2017, vol. 7, pp. 8936-8943; DOI:10.1039/C6RA28125G

    Article  ADS  Google Scholar 

  49. Yeganeh, M., Kafi, F., and Boochani, A., Thermoelectric Properties of InN Graphene-Like Nanosheet: A First Principle Study, Superlattices Microstruct., 2020, vol. 138, p. 106367; https://doi.org/10.1016/ j.spmi.2019.106367

    Article  Google Scholar 

  50. Bouziani, I., Haman, Z., Kibbou, M., Essaoudi, I., Ainane, A., and Ahuja, R., Electronic, Optical and Thermoelectric Properties of Two-Dimensional Pentagonal SiGeC4 Nanosheet for Photovoltaic Applications: First-Principles Calculations, Superlattices Microstruct., 2021, vol. 158, p. 107024; https://doi.org/10.1016/j.spmi.2021.107024

    Article  Google Scholar 

  51. Monkhorst, H.J. and Pack, J.D., Special Points for Brillouin-Zone Integrations, Phys. Rev. B., 1976, vol. 13, p. 5188; https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  52. Perdew, J.P., Burke, K., and Ernzerhof, M., Perdew, Burke, and Ernzerhof Reply, Phys. Rev. Lett., 1998, vol. 80, p. 891; https://doi.org/10.1103/PhysRevLett.80.891

    Article  ADS  Google Scholar 

  53. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865; https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  54. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., and Dal Corso, A., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Matter, 2009, vol. 21, p. 395502; DOI:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  55. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., and Colonna, N., Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 2017, vol. 29, p. 465901; DOI:10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  56. Madsen, G.K. and Singh, D.J., BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities, Comput. Phys. Commun., 2006, vol. 175, pp. 67–71; https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  57. Oh, M.W., Wee, D.M., Park, S.D., Kim, B.S., and Lee, H.W., Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations, Phys. Rev. B, 2008, vol. 77, p. 165119; https://doi.org/10.1103/PhysRevB.77.165119

    Article  ADS  Google Scholar 

  58. Abdullah, N.R., Abdullah, B.J., and Gudmundsson, V., High Thermoelectric and Optical Conductivity Driven by the Interaction of Boron and Nitrogen Dopant Atoms with a 2D Monolayer Beryllium Oxide, Mater. Sci. Semicond. Process., 2022, vol. 141, p. 106409; https://doi.org/10.1016/j.mssp.2021.106409

    Article  Google Scholar 

  59. Zhang, Y.G., He, H.Y., and Pan, B.C., Structural Features and Electronic Properties of MgO Nanosheets and Nanobelts, J. Phys. Chem. C, 2012, vol. 116, pp. 23130–23135; https://doi.org/10.1021/jp3077062

    Article  Google Scholar 

  60. Nourozi, B., Aminian, A., Fili, N., Zangeneh, Y., Boochani, A., and Darabi, P., The Electronic and Optical Properties of MgO Mono-Layer: Based on GGA-mBJ, Results Phys., 2019, vol. 12, pp. 2038–2043; https://doi.org/10.1016/j.rinp.2019.02.054

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Abdullah.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, B.J. Thermoelectric Properties of BeO and MgO Monolayers from First-Principles Calculations. J. Engin. Thermophys. 33, 186–199 (2024). https://doi.org/10.1134/S1810232824010132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232824010132

Navigation