Skip to main content
Log in

Vibrational and Thermodynamical Properties of MgO Nanosheets of (111) and (100) Facets by Density Functional Theory

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interesting properties of 2D nanostructures provide a possibility for developing different applications for these materials. This study mainly focuses on investigating the phonon and thermodynamic properties of MgO (111) and MgO (100) nanosheets through first-principle calculations using density functional theory and density functional perturbation theory. The generalized gradient approximation in a plane wave basis was used for the exchange–correlation potential, and a quasi-harmonic approximation was employed to calculate the thermodynamic properties. The obtained phonon dispersion curves of MgO (111) and MgO (100) nanosheets indicated that the dynamical stability of both the studied samples of the nanosheet gradient of the acoustic branches was higher in MgO (100) than in MgO (111), which suggests a higher thermal conductivity of MgO (100). The total and partial phonon densities of states were specified and it was revealed that the acoustic phonons mainly result from the contribution of Mg, while the high frequency region of optical phonons derives from oxygen. The temperature variation of some thermodynamic properties, such as internal and Helmholtz free energies, entropy, specific heat capacity and Debye temperature (θD), were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hu, K. Zhu, L. Chen, C. Kübel, and R. Richards, J. Phys. Chem. C 111, 12038 (2007).

    Article  Google Scholar 

  2. Y.G. Zhang, H.Y. He, and B.C. Pan, J. Phys. Chem. C 116, 23130 (2012).

    Article  Google Scholar 

  3. F. Li, H. Li, L. Wang, P. He, and Y. Cao, Catal. Sci. Technol. 5, 1021 (2015).

    Google Scholar 

  4. N. Kamarulzaman, N.F. Chayed, N. Badar, M.F. Kasim, D.T. Mustaffa, K. Elong, R. Rusdi, T. Oikawa, and H. Furukawa, ECS J. Solid State Sci. Technol. 5, Q3038 (2016).

    Article  Google Scholar 

  5. W. Cui, P. Li, Z. Wang, and S. Zheng, J. Hazard. Mater. 341, 268 (2017).

    Article  Google Scholar 

  6. A. Akhtar, R. Pilevarshahri, and M.R. Benam, Phys. B 502, 61 (2016).

    Article  Google Scholar 

  7. B.B. Karki, R.M. Wentzcovitch, S. de Gironcoli, and S. Baroni, Phys. Rev. B 61, 8793 (2000).

    Article  Google Scholar 

  8. P. Kumar Balguria, D.G. Harris Samuel, T. Guruvishnu, D.B. Aditya, S.M. Mahadevan, and U. Thumu, Mater. Res. Express 5, 014013 (2018).

    Article  Google Scholar 

  9. K. Matsuzaki, H. Hosono, and T. Susaki, Phys. Rev. B 82, 033408 (2010).

    Article  Google Scholar 

  10. T.L. Chen, X.M. Li, W.D. Yu, and X. Zhang, Appl. Phys. A Mater. Sci. Process. 81, 657–661 (2005).

    Article  Google Scholar 

  11. H. Zhou, Y. Cai, G. Zhang, and Y.-W. Zhang, Nanoscale 1, 14 (2017).

    Google Scholar 

  12. Y. Wang, S.-L. Shang, H. Fang, Z.-K. Liu, and L.-Q. Chen, npj Comput. Mater. 2, 16006 (2016).

    Article  Google Scholar 

  13. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. Rev. 73, 515 (2001).

    Article  Google Scholar 

  14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  15. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  16. L.F. Huang, T.F. Cao, P.L. Gong, and Z. Zeng, Solid State Commun. 190, 5 (2014).

    Article  Google Scholar 

  17. Y. Xu, B. Peng, H. Zhang, H. Shao, R. Zhang, H. Lu, D. W. Zhang, and H. Zhu, Ann. Phys. 529, 1600152 (2017).

  18. L.F. Huang, P.L. Gong, and Z. Zeng, Phys. Rev. B 91, 205433 (2015).

    Article  Google Scholar 

  19. N. Peyghambarian, S.W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Englewood Cliffs: Prentice Hall, 1993).

    Google Scholar 

  20. R. Pilevar Shahri and A. Akhtar, Chin. Phys. B 26, 093107 (2017).

    Article  Google Scholar 

  21. A.T. Petit and P.L. Doulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

  22. X.-X. Ren, W. Kang, Z.-F. Cheng, and R.-L. Zheng, Chin. Phys. Lett. 33, 126501 (2016).

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank A. Akhtar for his supports in producing data and also Dr. P.R. Coxon at University of Cambridge for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yeganeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, M., Baghsiyahi, F.B. Vibrational and Thermodynamical Properties of MgO Nanosheets of (111) and (100) Facets by Density Functional Theory. J. Electron. Mater. 48, 3816–3822 (2019). https://doi.org/10.1007/s11664-019-07128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07128-3

Keywords

Navigation