Skip to main content
Log in

Investigation of Heat Transfer Increment in Electronic System Surfaces by Different Air Jet Impingement Applications

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The impinging jet technique is a high-performance cooling technology for microchips which are basic elements of electronic systems and having high heat generation rates in small volumes. In this study, the improvement of heat transfer of the microchips used in all technological products today by air impinging jet has been examined. For this purpose, numerical research has been carried out on the cooling of copper plate surfaces with two different patterns, reverse triangle and reverse semi-circle shaped having 1000 W/m2 constant heat flux in rectangular cross-section ducts with adiabatic surfaces, by one and double air jets with distances of D\(_{h}\) and 2D\(_{h}\) between them. Numerical computation has been performed for energy and Navier–Stokes equations as steady and three-dimensional by employing the Ansys-Fluent computer program with the k-\(\varepsilon\) turbulence model. The obtained results have been compared with the numerical and experimental results of the study in the literature and it has been seen that they are compatible with each other. The results have been presented as the mean Nu number and the variation of surface temperature for each of both patterned surfaces in single and double jet channels with different distances. Streamline and temperature contour distributions of the jet flow along the channel for different H/D\(_{h}\) ratios and jet numbers have been evaluated for both patterned surfaces. In double-jet and 2D\(_{h}\) distance channels compared to D\(_{h}\), at H/D\(_{h}\) = 12 and Re = 11,000, the Nu number increases of 67% and 65.9% have been observed on the first-row reverse triangle and semi-circular patterned surfaces, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. Narumanchi, S.V.J., Amon, C.H., and Murthy, J.Y., Influence of Pulsating Submerged Liquid Jets on Chip-Level Thermal Phenomena, Trans. ASME, 2003, vol. 125, pp. 354–361; https://doi.org/ 10.1115/1.1572903

    Article  Google Scholar 

  2. Kercher, D.S., Lee, J.B., Brand, O., Allen, M.G., and Glezer, A., Microjet Cooling Devices for Thermal Management of Electronics, IEEE Trans. Comp. Pack. Techn., 2003, vol. 26, pp. 359–366; https://doi.org/10.1109/TCAPT.2003.815116

    Article  Google Scholar 

  3. Carlomagno, G.M. and Ianiro, A., Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review, Exp. Therm. Fluid Sci., 2014, vol. 58, pp. 15–35; https://doi.org/ 10.1016/j.expthermflusci.2014.06.010

    Article  Google Scholar 

  4. Arguis, E., Rady, M.A., and Nada, S.A., A Numerical Investigation and Parametric Study of Cooling an Array of Multiple Protruding Heat Sources by a Laminar Slot Air Jet, Int. J. Heat Mass Transfer, 2007, vol. 28, pp. 787–805; https://doi.org/10.1016/j.ijheatfluidflow.2006.09.004

    Article  Google Scholar 

  5. Popovac. M, and Hanjalic, K., Large-Eddy Simulation of Flow over a Jet-Impinged Wall Mounted Cube in a Cross Stream, Int. J. Heat Fluid Flow, 2007, vol. 28, pp. 1360–1378; https://doi.org/ 10.1016/j.ijheatfluidflow.2007.05.009

    Article  Google Scholar 

  6. Barbosa, F.V., Teixeira, S.F.C.F., and Teixeira, J.C.F., Convection from Multiple Air Jet Impingement—A Review, Appl. Therm. Eng., 2023, vol. 218, p. 119307; https://doi.org/10.1016/ j.applthermaleng.2022.119307

    Article  Google Scholar 

  7. Karabulut, K. and Alnak, D.E., Study of Cooling of the Varied Designed Warmed Surfaces with an Air Jet Impingement, Pamukkale Univ. J. Eng. Sci., 2020, vol. 26, pp. 88–98; https://doi.org/ 10.5505/pajes.2019.58812

    Article  Google Scholar 

  8. Karabulut, K., Heat Transfer Improvement Study of Electronic Component Surfaces Using Air Jet Impingement, J. Comp. Elect., 2019, vol. 18, pp. 1259–1271; https://doi.org/10.1007/s10825-019- 01387-3

    Article  Google Scholar 

  9. Tepe, A.Ü., Numerical Investigation of a Novel Jet Hole Design for Staggered Array Jet Impingement Cooling on a Semicircular Concave Surface, Int. J. Therm. Sci., 2021, vol. 162, p. 106792; https://doi.org/10.1016/j.ijthermalsci.2020.106792

    Article  Google Scholar 

  10. Yogi, K., Krishnan, S., and Prabhu, S.V., Experimental Investigation on the Local Heat Transfer with an Unconfined Slot Jet Impinging on a Metal Foamed Flat Plate, Int. J. Therm. Sci., 2021, vol. 169, p. 107065; https://doi.org/10.1016/j.ijthermalsci.2021.107065

    Article  Google Scholar 

  11. Wu, J.Y., Lv, R.R., Huang, Y.Y., and Yang, G., Transverse Buoyant Jet-Induced Mixed Convection Inside a Large Thermal Cycling Test Chamber with Perforated Plates, Int. J. Therm. Sci., 2021, vol. 168, p. 107080; https://doi.org/10.1016/j.ijthermalsci.2021.107080

    Article  Google Scholar 

  12. Rathore, S.S. and Verma, S.K., Numerical Investigation on the Efficacy of Jet Obliquity for Fluid Flow and Thermal Characteristics of Turbulent Offset Jet, Heat Mass Transfer, 2022, vol. 58, pp. 1223–1246; https://doi.org/10.1007/s00231-021-03156-0

    Article  ADS  Google Scholar 

  13. Zou, L., Ning, L., Wang, X., Li, Z., He, L., and Ll, H., Evaluation of Interfacial Heat Transfer Coefficient Based on the Experiment and Numerical Simulation in the Air-Cooling Process, Heat Mass Transfer, 2022, vol. 58, pp. 337–354; https://doi.org/10.1007/s00231-021-03113-x

    Article  ADS  Google Scholar 

  14. Koca, F. and Zabun, M., The Effect of Outlet Location on Heat Transfer Performance in Micro Pin-Fin Cooling Used for a CPU, European Phys. J. Plus, 2021, vol. 136, no. 11, p. 1115; https://doi.org/10.1140/epjp/s13360-021-02113-4

    Article  ADS  Google Scholar 

  15. Koca, F. and Güder, T.B., Numerical Investigation of CPU Cooling with Micro-Pin-Fin Heat Sink in Different Shapes, European Phys. J. Plus, 2022, vol. 137, no. 11, p. 2276; https://doi.org/10.1140/ epjp/s13360-021-02113-4

    Article  Google Scholar 

  16. Diop, S.N., Dieng, B., and Senaha, I., A Study on Heat Transfer Characteristics by Impinging Jet with Several Velocities Distribution, Case Stud. Therm. Eng., 2021, vol. 26, p. 101111; https://doi.org/10.1016/j.csite.2021.101111

    Article  Google Scholar 

  17. Leena, R., Syamkumar, G., and Prakash, M.J., Experimental and Numerical Analyses of Multiple Jets Impingement Cooling for High-Power Electronics, IEEE Trans. Comp. Pack. Manuf. Tech., 2018, vol. 8, pp. 210–215; https://doi.org/10.1109/TCPMT.2017.2783629

    Article  Google Scholar 

  18. Belarbi, A.A., Beriache, M., and Bettahar, A., Experimental Study of Aero-Thermal Heat Sink Performances Subjected to Impinging Air Flow, Int. J. Heat Tech., 2018, vol. 36, pp. 1310–1317; https://doi.org/10.18280/ijht.360420

    Article  Google Scholar 

  19. Jones-Jackson, S., Rodriguez, R., and Emadi, A., Jet Impingement Cooling in Power Electronics for Electrified Automotive Transportation: Current Status and Future Trends, IEEE Trans. Power Elect., 2021, vol. 36, pp. 10420–10435; https://doi.org/10.1109/TPEL.2021.3059558

    Article  ADS  Google Scholar 

  20. Carneiro, M.V.P. and Barbosa, Jr., J., A Comparison of Parallel and Colliding Jet Arrays in a Compact Vapour Compression Heat Sink for Electronics Cooling, Appl. Therm. Eng. 2021, vol. 195, p. 117217; https://doi.org/10.1016/j.applthermaleng.2021.117217

    Article  Google Scholar 

  21. Radmard, V., Hadad, Y., Rangarajan, S., Hoang, C.H., Fallahtafti, N., Arvin, C.L., Sikka, K., Schiffres, S.N., and Sammakia, B.G., Multi-Objective Optimization of a Chip-Attached Micro Pin Fin Liquid Cooling System, Appl. Therm. Eng., 2021, vol. 195, p. 117187; https://doi.org/10.1016/ j.applthermaleng.2021.117187

    Article  Google Scholar 

  22. Wang, S.J. and Mujumdar, A.S., A Comparative Study of Five Low Reynolds Number k-ε Models for Impingement Heat Transfer, Appl. Therm. Eng., 2005, vol. 25, pp. 31–44; https://doi.org/10.1016/ j.applthermaleng.2004.06.001

    Article  Google Scholar 

  23. Kilic, M., Calisir, T., and Baskaya, S., Experimental and Numerical Study of Heat Transfer from a Heated Flat Plate in a Rectangular Channel with an Impinging Air Jet, J. Braz. Soc. Mech. Sci. Eng., 2017, vol. 39, pp. 329–344; https://doi.org/10.1007/s40430-016-0521-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Alnak or K. Karabulut.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnak, D.E., Karabulut, K. Investigation of Heat Transfer Increment in Electronic System Surfaces by Different Air Jet Impingement Applications. J. Engin. Thermophys. 33, 161–185 (2024). https://doi.org/10.1134/S1810232824010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232824010120

Navigation