Skip to main content
Log in

On Temperature of Working Fluid Supply to Combustion Chamber in CO2 Power Cycles with Oxy-Combustion of Methane

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The article addresses the thermodynamic issues of supercritical CO2 power cycles at combustion of methane with oxygen. By the example of cycle with single-stage pump pressure rise with condensation of the working fluid, we consider the issue of ensuring the temperature of the working fluid supplied to the combustion chamber and the value of the theoretical specific heat flux into the regenerative system of cycle for a wide range of initial parameters at the turbine inlet. It has been shown that, depending on the pressure, the heat flux into the regenerative system is 700–1000 kJ/kgCO2 when an initial temperature of 1000°C is provided, and its fraction in the total heat transfer to the working fluid is 0.5–0.6 in the zone of operational initial parameters. It has been determined that for the cycle efficiency to be high, the temperature of the working fluid supplied to the combustion chamber in the regenerative heat exchanger should be at least \(\sim 2/3\) of the temperature at its outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. IEA, Global Energy Review: CO2 Emissions in 2021; https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed 2023-01-21).

  2. IEA, World Energy Balances: Overview; https://www.iea.org/reports/world-energy-balances-overview (accessed 2023-01-21).

  3. Global Energy Statistical Yearbook 2020; https://yearbook.enerdata.ru/co2-fuel-combustion/CO2-emissions-data-from-fuel-combustion.html (accessed 2023-01-21).

  4. On Restriction on Green-House Emissions, RF Federal Act 296-FZ of 2 July 2021; http:// www.kremlin.ru/acts/bank/47013 (accessed 03.01.2023).

  5. European Commission: Energy, Climate Change, Environment: 2050 Long-Term Strategy; https:// eceuropaeu/clima/policies/strategies/2050_en (accessed 02.02.2023).

  6. Veselov, F.V., Erokhina, I.V., Makarova, A.S., Solyanik, A.I., and Urvantseva, L.V., Scales and Consequences of Deep Decarbonization of the Russian Electric Power Industry, Therm. Eng., 2022, vol. 69, pp. 751–762; https://doi.org/10.1134/S0040601522100093.

    Article  ADS  Google Scholar 

  7. IPCC, Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, 2018; https://wwwipccch/sr15/ (accessed 01.01.2023).

  8. Global Energy Statistical Yearbook 2020, Enerdata, 2020; https://yearbookenerdataru/co2-fuelcombustion/CO2-emissionsdatafromfuelcombustionhtml (accessed 23.12.2022).

  9. UNFCCC Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev., 2015; http://unfcccint/resource/docs/2015/cop21/eng/l09r01.pdf (accessed 01.01.2023).

  10. Darabkhani, H.G., Varasteh, H., and Bazooyar, B., Oxyturbine Power Cycles and Gas-CCS Technologies in Carbon Capture Technologies for Gas-Turbine-Based Power Plants, Elsevier, 2023, pp. 39–74; https://doi.org/10.1016/B978-0-12-818868-2.00006-0.

  11. Heitmeir, F. and Jericha, H., Turbomachinery Design for the Graz Cycle: An Optimized Power Plant Concept for CO2 Retention, Procs. of the Institution of Mechanical Engineers, Part A: J. of Power and Energy, 2005, vol. 219, no. 2, pp. 147–155; https://doi.org/10.1243/095765005X6845.

    Article  Google Scholar 

  12. Wimmer, K. and Sanz, W., Optimization and Comparison of the Two Promising Oxy-Combustion Cycles NET Power Cycle and Graz Cycle, Int. J. Greenhouse Gas Control, 2020, vol. 99, p. 103055; https://doi.org/10.1016/j.ijggc.2020.103055.

    Article  Google Scholar 

  13. Kosoi, A.S., Zeigarnik, Yu.A., Popel’, O.S., Sinkevich, M.V., Filippov, S.P., and Shterenberg, V.Ya., The Conceptual Process Arrangement of a Steam–Gas Power Plant with Fully Capturing Carbon Dioxide from Combustion Products, Thermal Engin., 2018, vol. 65, no. 9, pp. 597–605; https://doi.org/10.1134/ S0040601518090045.

    Article  ADS  Google Scholar 

  14. Sinkevich, M., Kosoy, A., and Popel, O., Comparative Analysis of the Allam Cycle and the Cycle of Compressorless Combined Cycle Gas Turbine Unit, E3S Web Conf., 2020, vol. 209, p. 03023; https:// doi.org/10.1051/e3sconf/202020903023.

    Article  Google Scholar 

  15. Borisov, Y., Fominykh, N., Ramazanov, E., and Popel, O., Analysis of the Compressorless Combined Cycle Gas Turbine Unit Performance Efficiency in District Heating Systems E3S Web Conf., 2020, vol. 209, p. 03008; https://doi.org/10.1051/e3sconf/202020903008.

    Article  Google Scholar 

  16. Datsenko, V.V., Zeigarnik, Yu.A., Kalashnikova, E.O., Kosoy, A.A., Kosoy, A.S., and Sinkevich, M.V., Combined Cycle Plants with Complete Capturing of Carbon Dioxide for Clean Power Projects, Thermophys. Aeromech., 2020, vol. 27, no. 5, pp. 775–781; https://doi.org/10.1134/S0869864320050121.

    Article  ADS  Google Scholar 

  17. Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, G.W., Sasaki, T., Itoh, M., and Manning, J., Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture, Energy Procedia, 2017, vol. 114, pp. 5948–5966; https://doi.org/10.1016/j.egypro.2017.03.1731.

    Article  Google Scholar 

  18. Rogalev, A., Kindra, V., and Osipov, S., Modeling Methods for Oxy-Fuel Combustion Cycles with Multicomponent Working Fluid, AIP Conf. Procs., 2018, vol. 2047, p. 020020; https://doi.org/10.1063/ 1.5081653.

  19. Rogalev, A.N., Grigoryev, E.Yu., Kindra, V.O., Osipov, S.K., and Pavlychev, S.A., Design Concept of High-Power Supercritical CO2 Allam Cycle Gas Turbine Flow Path, Vestnik IGEU, 2018, vol. 3, pp. 5–14; https://doi.org/10.17588/2072-2672.2018.3.005-014.

    Article  Google Scholar 

  20. Rogalev, A., Grigoriev, E., Kindra, V., and Rogalev, N., Thermodynamic Optimization and Equipment Development for a High Efficient Fossil Fuel Power Plant with Zero Emissions, J. Clean. Prod., 2019, vol. 236, p. 117592; https://doi.org/10.1016/j.jclepro.2019.07.067.

    Article  Google Scholar 

  21. Shchinnikov, P., Borush, O., Frantseva, A., and Sadkin, I., Efficiency of Zero Emission Cycles on the Basis of Their Configuration, E3S Web Conf., 2021, vol. 289, p. 02001; https://doi.org/10.1051/e3sconf/ 202128902001.

    Article  Google Scholar 

  22. Shchinnikov, P.A., Sadkin, I.S., Shchinnikov, A.P., Cheganova, N.F., and Vorogushina, N.I., Influence of the Initial Parameters on the Thermodynamic Efficiency of Carbon Dioxide Power Cycles, J. Phys. Conf. Ser., 2022, vol. 2150, p. 012011; https://doi.org/10.1088/1742-6596/2150/1/012011.

    Article  Google Scholar 

  23. Sadkin, I.S. and Shchnnikov, P.A., Features of Renewal of Working Fluid of Carbon Dioxide Semi-Open Power Cycle of Various Architectures, in Razvitie metodov prikladnoi matermatiki dlya resheniya mezhdistsiplinarnykh problem energetiki (Development of Methods of Applied Mathematics for Solving Interdisciplinary Problems of Power Engineering), Ul’yanovsk: UlGTU, 2022; http://libulsturu/ venec/disk/2022/114.pdf.

  24. Alexeenko, S.V., Shchinnikov, P.A., and Sadkin, I.S., Effect of Thermodynamic Parameters on Energy Characteristics of CO2 Power Cycles during Oxygen Combustion of Methane, Thermophys. Aeromech., 2023, vol. 30, no. 1, pp. 83–92; https://doi.org/10.1134/S0869864323010109.

    Article  ADS  Google Scholar 

  25. Sadkin, I.S. and Shchinnikov, P.A., Influence of Intermediate Regeneration on the Efficiency of CO2 Power Cycles with Two-Stage Pressure Rise, Problemy sovershenstvovaniya toplivno-energeticheskogo kompleksa. Vypusk9 (Problems of Improvement of Fuel and Power Complexes. Issue 9), Saratov: Izd. SGTU, 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Sadkin.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadkin, I.S., Korepanova, E.M. & Shchinnikov, P.A. On Temperature of Working Fluid Supply to Combustion Chamber in CO2 Power Cycles with Oxy-Combustion of Methane. J. Engin. Thermophys. 32, 816–823 (2023). https://doi.org/10.1134/S1810232823040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823040136

Navigation