Skip to main content

Research of the Coolant Type Effect on the Oxy-Fuel Combustion Power Cycle Efficiency

  • Conference paper
  • First Online:
SMART Automatics and Energy

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 272))

Abstract

Carbon dioxide atmospheric emissions grow continuously. This is why the electricity production prospects are related to the highly efficient oxygen-fuel power production plants. The most efficient of these plants are based on the Allam cycle that reaches its maximal efficiency at 1100 °C. Further temperature increase reduces the cycle efficiency because of remarkable growth of the turbine cooling losses. This problem may be solved by changes of the cooling system heat carrier. This work studies influence of the cooling agent type upon the oxy-fuel cycle efficiency. Application of the closed nitrogen cooling system with utilization of the heat taken from hot turbine elements in a turbo-expander allows 1.2 times reduction of the coolant flow and a 1.5% increase of the cycle efficiency at the initial temperature increase from 1100 to 1300 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peters, G.P., Andrew, R.M., Canadell, J.G., Friedlingstein, P., Jackson, R.B., Korsbakken, J.I., C Le Quéré and Peregon, A.: Nat. Clim. Chang. 10(1), 3–6 (2020)

    Google Scholar 

  2. Friedlingstein, P., et al.: Earth Syst. Sci. Data 12(4), 3269–3340 (2020)

    Article  Google Scholar 

  3. Le Quéré, C., et al.: Nat. Clim. Chang. 9(3), 213–217 (2019)

    Article  Google Scholar 

  4. Bui, M., et al.: Energy Environ. Sci 11(5), 1062–1176 (2018)

    Article  Google Scholar 

  5. Fan, J.L., Xu, M., Li, F., Yang, L., Zhang, X.: Appl. Energy 229, 326–334 (2018)

    Article  Google Scholar 

  6. Komarov, I., Kharlamova, D., Makhmutov, B., Shabalova, S., Kaplanovich, I.: In High Speed Turbomachines and Electrical Drives Conference, vol 178 (E3S Web Conf.), p. 01027 (2020)

    Google Scholar 

  7. Rogalev, A., Kindra, V., Osipov, S.: In 17th Conference of Power System Engineering, Thermodynamics and Fluid Mechanics, vol. 2047, p. 020020. AIP Publishing (2018)

    Google Scholar 

  8. Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, G.W., Jr., Sasaki, T., Itoh, M., Manning, J.: Energy Procedia 114, 5948–5966 (2017)

    Article  Google Scholar 

  9. Allam, R.J., Palmer, M.R., Brown, Jr.G.W., Fetvedt, J., Freed, D., Nomoto, H., Itoh, M., Okita, N., Jones, Jr.Ch.: Energy Procedia 37, 1135–49 (2013)

    Google Scholar 

  10. Scaccabarozzi, R., Gatti, M., Martelli, E.: Appl. Energy 178, 505–526 (2016)

    Article  Google Scholar 

  11. Rogalev, A., Kindra, V., Osipov, S., Rogalev, N.: In 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (European Turbomachinery Society) ETC2019-030 (2019)

    Google Scholar 

  12. Kindra, V., Osipov, S., Vegera, A.: In 2019 International Science and Technology Conference EastConf (Vladivostok, Russia), (IEEE), pp. 1–6 (2019)

    Google Scholar 

  13. Kotowicz, J., Brzęczek, M., Job, M.: Energy 164, 359–376 (2018)

    Article  Google Scholar 

  14. Shukla, A.K., Singh, O.: Appl. Therm. Eng. 102, 454–464 (2016)

    Article  Google Scholar 

  15. Lin, A., Zheng, Q., Jiang, Y., Lin, X., Zhang, H.: Int. J. Heat Mass Transfer 137, 882–894 (2019)

    Article  Google Scholar 

  16. Facchini, B., Ferrara, G., Innocenti, L.: Int. J. Therm. Sci. 39, 74–84 (2000)

    Article  Google Scholar 

  17. Wang, W., Gao, J., Shi, X., Xu, L.: Int. J. Heat Mass Transfer 62, 668–679 (2013)

    Article  Google Scholar 

  18. Fraas, A.P.: Summary of Research and Development Effort on Air and Water Cooling of Gas Turbine Blades, p. 56. Oak Ridge National Lab, USA (1980)

    Google Scholar 

  19. Kindra, V., Rogalev, A., Zlyvko, O., Zonov, A., Smirnov, M., Kaplanovich, I.: Arch. Thermodyn 41(4), 191–202 (2020)

    Google Scholar 

Download references

Acknowledgements

The study is conducted within the project “Development of research base for high temperature oxy-fuel cycle turbines” supported by the MEI grant on research studies “Power production”, “Electronics, radio and IT”, “Industry technology 4.0 for industry, robotic machinery” in 2020–2022.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osipov, S., Vegera, A., Sklyar, N., Lvov, D. (2022). Research of the Coolant Type Effect on the Oxy-Fuel Combustion Power Cycle Efficiency. In: Solovev, D.B., Kyriakopoulos, G.L., Venelin, T. (eds) SMART Automatics and Energy. Smart Innovation, Systems and Technologies, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-16-8759-4_40

Download citation

Publish with us

Policies and ethics