Skip to main content

Experimental Assessment of Latent Heat of Evaporation for Hybrid Nanofluids

Abstract

Innovative use of nanoparticles in synthesis to form hybrid nanofluids is of great interest recently. This generation of nanofluids is known to improve some thermal characteristics deliberately. In the present study, evaporative behavior of hybrid nanofluids is investigated experimentally. In boiling-mode cooling systems, longer lengths of dryouts are more preferred. In this regard, enhancing the value of heat of evaporation is a target. The experiments are implemented at temperature ranging from 90 to 155◦C and in the solid volume fraction range of 0–3%. It is found that the use of hybrid nanofluids to enhance the fluid stability and in consequence the fluid latent heat of evaporation (LHE) is rational just at high working pressures (higher than 400 kPa). The most effective hybrid nanofluid in this study is 2% Ag–Au, which results in max increase of 8.7% in the latent heat of evaporation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Murshed, S.M.S., Leong, K.C., and Yang, C., Thermophysical and ElectroKinetic Properties ofNanofluids— ACritical Review, Appl. Therm. Eng., 2008, vol. 28, pp. 2109–2125.

    Article  Google Scholar 

  2. 2.

    Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., 2008, vol. 29, pp. 432–460.

    ADS  Article  Google Scholar 

  3. 3.

    Wen, D., Lin, G., Vafaei, S., and Zhang, K., Review of Nanofluids for Heat Transfer Applications, Particuology, 2009, vol. 7, no. 2, pp. 141–150.

    Article  Google Scholar 

  4. 4.

    Kakac, S. and Pramuanjaroenki, A., Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 3187–3196.

    MATH  Article  Google Scholar 

  5. 5.

    Taylor, R.A. and Phelan, P.E., Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data, Int. J. HeatMass Transfer, 2009, pp. 5339–5347.

    Google Scholar 

  6. 6.

    Chandrasekar, M. and Suresh, S., A Review on the Mechanisms of Heat Transport Nanofluids, Heat Transfer Engng., 2009, vol. 30, no. 14, pp. 1136–1150.

    ADS  Article  Google Scholar 

  7. 7.

    özerinc¸, S., Kakac¸, S., and Yazicioglu, A.G., Enhanced Thermal Conductivity of Nanofluids: A State-ofthe-Art Review, Microfluid. Nanofluid., 2010, vol. 8, no. 2, pp. 145–170.

    Article  Google Scholar 

  8. 8.

    Paul, G., Chopkar, M., Manna, I., and Das, P.K., Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review, Renew. Sustain. Energy Rev., 2010, vol. 14, pp. 1913–1924.

    Article  Google Scholar 

  9. 9.

    Terekhov, V.I., Kalinina, S.V., and Lemanov, V.V., The Mechanism of Heat Transfer in Nanofluids: State-ofthe Art (Review), Part 1: Synthesis and Properties of Nanofluids, Thermophys. Aeromech., 2010, vol. 17, iss. 1, pp. 1–14.

    Google Scholar 

  10. 10.

    Terekhov, V.I., Kalinina, S.V., and Lemanov, V.V., The Mechanism of Heat Transfer in Nanofluids: Stateof-the-Art (Review), Part 2: Convective Heat Transfer, Thermophys. Aeromech., 2010, vol. 17, iss. 2, pp. 157–171.

    Google Scholar 

  11. 11.

    Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and Wang, H.P., Eds., New York: ASME, 1995, FEDVol. 231/MD, vol. 66, pp. 99–105.

    Google Scholar 

  12. 12.

    Sarkar, J.A., Critical Review of Heat Transfer Correlations of Nanofluids, Renew. Sustain. Energy Rev., 2011, vol. 15, pp. 3271–3277.

    Article  Google Scholar 

  13. 13.

    Yu, W. and Xie, H., A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomat., 2012, art. ID 435873.

    Google Scholar 

  14. 14.

    Wong, K.V. and Leon, O.D., Applications of Nanofluids: Current and Future, Mech. Aerosp. Eng., 2010, art. 519659.

    Google Scholar 

  15. 15.

    Sarkar, J., Ghosh, P., and Adil, A., A Review on Hybrid Nanofluids: Recent Research, Development and Applications, Renew. Sustain. Energy Rev., 2015, vol. 43, pp. 164–177.

    Article  Google Scholar 

  16. 16.

    Azwadi, N., Sidik, C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R., and Najafi, G., Recent Progress on Hybrid Nanofluids in Heat Transfer Applications: A Comprehensive Review, Int. Comm. Heat Mass Transfer, 2016, vol. 78, pp. 68–79.

    Article  Google Scholar 

  17. 17.

    Nor Azwadi, C.S., Adamu, I.M., and Jamil, M.M., PreparationMethods and Thermal Performance ofHybrid Nanofluids, J. Adv. Rev. Sci. Res., 2016, vol. 24, no. 1, pp. 13–23.

    Google Scholar 

  18. 18.

    Suresh, K.R., Mohideen, S.T., and Nethaji, N., Heat Transfer Characteristics of Nanofluids in Heat Pipes: A Review, Renew. Sustain. Energy Rev., 2013, vol. 20, pp. 397–410.

    Article  Google Scholar 

  19. 19.

    Sergis, A. and Hardalupas, Y., AnomalousHeat TransferModes of Nanofluids: A Review Based on Statistical Analysis, Nanoscale Res. Lett., 2011, vol. 6, p.391.

    ADS  Article  Google Scholar 

  20. 20.

    Thomas, S. and Sobhan, C.B.P., A Review of Experimental Investigations on Thermal Phenomena in Nanofluids, Nanoscale Res. Lett., 2011, vol. 6, pp. 377–390.

    ADS  Article  Google Scholar 

  21. 21.

    Kim, H., Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-the Art Review, Nanoscale Res. Lett., 2011, vol. 6, p.415.

    ADS  Article  Google Scholar 

  22. 22.

    Ghadimi, A., Saidur, R., and Metselaar, H.S.C., A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transfer, 2011, vol. 54, no. 17, pp. 4051–4068.

    Article  Google Scholar 

  23. 23.

    Ramesh, G. and Prabhu, N.K., Review of Thermo-Physical Properties,Wetting and Heat Transfer Characteristics of Nanofluids and Their Applicability in Industrial Quench Heat Treatment, Nanoscale Res. Lett., 2011, vol. 6, p.334.

    ADS  Article  Google Scholar 

  24. 24.

    Haddad, Z., Oztop, H.F., Nada, E.A., and Mataoui, A., A Review on Natural Convective Heat Transfer of Nanofluids, Renew. Sustain. Energy Rev., 2012, vol. 16, no. 7, pp. 5363–5378.

    Article  Google Scholar 

  25. 25.

    Huminic, G., Application of Nanofluids in Heat Exchangers: A Review, Renew. Sustain. Energy Rev., 2012, vol. 16, no. 8, pp. 5625–5638.

    Article  Google Scholar 

  26. 26.

    Baniamerian, Z. and Mashayekhi, M., Experimental Assessment of Saturation Behavior of Boiling Nanofluids: Pressure and Temperature, J. Thermophys. Heat Transfer, 2017, vol. 31, no. 3, pp. 732–738.

    Article  Google Scholar 

  27. 27.

    Baniamerian, Z., Mashayekhi, M., and Mehdipour, R., Evaporative Behavior of Au-Based Hybrid Nano fluids, J. Thermophys. Heat Transfer; DOI: 10.2514/1.T5220.

  28. 28.

    Tso, C.Y. and Chao, C.Y.H., Study of Enthalpy of Evaporation, Saturated Vapor Pressure and Evaporation Rate of Aqueous Nanofluids, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 931–941.

    Google Scholar 

  29. 29.

    Aslani, B. and Moghiman, M., The Sixth Joint Conference of Iranian Metallurgical Engineering Society and Iranian Foundry Men’s Society, University of Tehran, December 2012.

    Google Scholar 

  30. 30.

    Lee, S., Phelan, P.E., Dai, L., Prasher, R., Gunawan, A., and Taylor, R.A., Experimental Investigation of the Latent Heat of Vaporization in Aqueous Nanofluids, Appl. Phys. Lett., 2014, vol. 104, iss. 15, art. 151908.

    Google Scholar 

  31. 31.

    Ameen, M.M., Prabhul, K., Sivakumar, G., Abraham, P.P., Jayadeep, U.B., and Sobhan, C.B., Molecular Dynamics Modeling of Latent Heat Enhancement in Nanofluids, Int. J. Thermophys., 2010, vol. 31, no. 6, pp. 1131–1144.

    ADS  Article  Google Scholar 

  32. 32.

    Zhu, D., Wu, S., and Wang, N., Thermal Physics and Critical Heat Flux Characteristics of Al2O3-H2O Nanofluids, Heat Transfer Eng., 2010, vol. 31, no. 14, pp. 1213–1219.

    ADS  Article  Google Scholar 

  33. 33.

    Chen, R.H., Phuoc, T.X., and Martello, D., Effects of Nanoparticles on Nanofluid Droplet Evaporation, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 3677–3682.

    Article  Google Scholar 

  34. 34.

    Moffat, R.J., Describing the Uncertainties in Experimental Results, Exp. Therm. Fluid Sci., 1988, vol. 1, pp. 3–17.

    ADS  Article  Google Scholar 

  35. 35.

    ASHRAE Handbook.

  36. 36.

    Ahn, H.S. and Kim, M.H., A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification, J. Heat Transfer, 2012, vol. 134, no. 2, pp. 1–13.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Baniamerian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baniamerian, Z., Mashayekhi, M. Experimental Assessment of Latent Heat of Evaporation for Hybrid Nanofluids. J. Engin. Thermophys. 27, 560–579 (2018). https://doi.org/10.1134/S1810232818040197

Download citation