Skip to main content
Log in

Numerical investigation of subcooled boiling characteristics of magnetic nanofluid under the effect of quadrupole magnetic field

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper investigates numerically the characteristics of subcooled flow boiling of a magnetic nanofluid (refrigerant-113 and 4 vol% Fe3O4) in a vertical annulus, which is exposed to a nonuniform transverse magnetic field generated by the quadrupole magnet. A control volume technique and SIMPLEC algorithm have been used for discretizing the governing equations and pressure-velocity coupling, respectively. The two-fluid model has been used to simulate subcooled flow boiling of the refrigerant-113. The results indicate that subcooled flow boiling characteristics change not only by using nanofluid as the working fluid, but also by applying the nonuniform transverse magnetic field. In the presence of the aforementioned magnetic field due to the Kelvin force, the fluid attracted to the outer wall. This leads to higher bubble detachment frequency so that the heat pumping is increased and the void fraction on the heated wall is decreased. Thus, the critical heat flux as one of the most important parameters in boiling processes will be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosensweig, R.E., Ferrohydrodynamics, London: Cambridge University Press, 1985.

    Google Scholar 

  2. Hiegeister, R., Andra, W., Buske, N., Hergt, R., Hilger, I., Richter, U., and Kaiser, W., Application of Magnetite Ferrofluids for Hyperthermia, J. Magn. Magn. Mater., 1999, vol. 201, pp. 420–422.

    Article  ADS  Google Scholar 

  3. Nakatsuka, K., Jeyadevan, B., Neveu, S., and Koganezawa, H., The Magnetic Fluid for Heat Transfer Applications, J. Magn. Magn. Mater., 2002, vol. 252, pp. 360–362.

    Article  ADS  Google Scholar 

  4. Shuchi, S., Sakatani, K., and Yamaguchi, H., An Application of a BinaryMixture ofMagnetic Fluid for Heat Transport Devices, J. Magn. Magn. Mater., 2005, vol. 289, pp. 257–259.

    Article  ADS  Google Scholar 

  5. Wen, C.Y., Chen, C.Y., and Yang, S.F., Flow Visualization of Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw Cell, J. Magn. Magn. Mater., 2002, vol. 252, pp. 206–208.

    Article  ADS  Google Scholar 

  6. Krakov, M.S. and Nikiforov, I.V., To the Influence ofUniformMagnetic Field on Thermomagnetic Convection in Square Cavity, J. Magn. Magn. Mater., 2002, vol. 252, pp. 209–211.

    Article  ADS  Google Scholar 

  7. Yamaguchi, H., Zhang, Z., Shuchi, S., and Shimada, K., Heat Transfer Characteristics ofMagnetic Fluid in a Partitioned Rectangular Box, J. Magn. Magn. Mater., 2002, vol. 252, pp. 203–205.

    Article  ADS  Google Scholar 

  8. Snyder, S.M., Cader, T., and Finlayson, B.A., Finite ElementModel ofMagnetoconvection of a Ferrofluid, J. Magn. Magn. Mater., 2003, vol. 252, pp. 269–279.

    Article  ADS  Google Scholar 

  9. Ganguly, R., Sen, S., and Puri, I.K., Thermomagnetic Convection in a Square Enclosure Using a Line-Dipole, Phys. Fluids, 2004, vol. 16, pp. 2228–2236.

    Article  ADS  MATH  Google Scholar 

  10. Wen, C.Y. and Su, W.P., Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw Cell, J. Magn. Magn. Mater., 2005, vol. 289, pp. 209–302.

    Article  Google Scholar 

  11. Tagawa, T., Ujihara, A., and Ozoe, H., Average Heat Transfer RatesMeasured in Two Different Temperature Ranges forMagnetic Convection of HorizontalWater Layer Heated from Below, Int. J. HeatMass Transfer, 2006, vol. 49, pp. 3555–3560.

    Article  Google Scholar 

  12. Jafari, A., Tynjala, T., Mousavi, S.M., and Sarkomaa, P., Simulation of Heat Transfer in a Ferrofluid Using Computational Fluid Dynamics Technique, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 1197–1202.

    Article  MATH  Google Scholar 

  13. Bozhko, A. and Putin, G., Thermomagnetic Convection as a Tool for Heat and Mass Transfer Control in NanosizeMaterials under Microgravity Conditions, Micrograv. Sci. Tech., 2009, vol. 2, pp. 89–93.

    Article  ADS  Google Scholar 

  14. Tzirtzilakis, E.E., Sakalis, V.D., Kafoussias, N., and Hatzikonstantinou, P.M., Biomagnetic Fluid Flow in a 3D Rectangular Duct, Int. J. Numer. Meth. Fluids, 2004, vol. 44, pp. 1279–1298.

    Article  MathSciNet  MATH  Google Scholar 

  15. Aminfar, H., Mohammadpourfard, M., and Narrimanikahnamouei, Y., A 3D Numerical Simulation of Mixed Convection of aMagnetic Nanofluid in the Presence of Nonuniform Magnetic Field in a Vertical Tube Using Two-PhaseMixture Model, J. Magn. Magn. Mater., 2011, vol. 323, pp. 1963–1972.

    Article  ADS  Google Scholar 

  16. Aminfar, H., Mohammadpourfard, M., and Mohseni, F., Two-Phase Mixture Model Simulation of the Hydrothermal Behavior of an Electrical Conductive Ferrofluid in the Presence of Magnetic Fields, J. Magn. Magn. Mater., 2011, vol. 324, pp. 830–842.

    Article  ADS  Google Scholar 

  17. Aminfar, H., Mohammadpourfard, M., and Ahangarzonouzi, S., Numerical Study of the Ferrofluid Flow and Heat Transfer through a Rectangular Duct in the Presence of a Nonuniform Transverse Magnetic Field, J. Magn. Magn. Mater., 2013, vol. 327, pp. 31–42.

    Article  ADS  Google Scholar 

  18. Yang, L., Ren, J., Song, Y., Min, J., and Gou, Z., Convection Heat Transfer Enhancement of Air in a Rectangular Duct by Application of a Magnetic Quadrupole Field, Int. J. Eng. Sci., 2004, vol. 42, pp. 491–597.

    Article  MATH  Google Scholar 

  19. Yang, L., Ren, J., Song, Y., Min, J., and Gou, Z., Free Convection of aGas Induced Biomagnetic Quadrupole Field, J. Magn. Magn. Mater., 2003, vol. 261, pp. 377–384.

    Article  ADS  Google Scholar 

  20. Bahiraei, M. and Hangi, M., Investigating the Efficacy of Magnetic Nanofluid as a Coolant in Double-Pipe Heat Exchanger in the Presence of Magnetic Field, Energy Convers.Manag., 2013, vol. 76, pp. 1125–1133.

    Article  Google Scholar 

  21. Lee, T., Lee, J., and Jeong, Y., Flow Boiling Critical Heat Flux Characteristics of Magnetic Nanofluid at Atmospheric Pressure and Low Mass Flux Conditions, Int. J. Heat Mass Transfer, 2013, vol. 56, pp. 101–106.

    Article  Google Scholar 

  22. Vafaei, S. and Wen, D., Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a HorizontalMicrochannel, ASME J. Heat Transfer, 2010, vol. 132, no. 10, 102404.

    Article  Google Scholar 

  23. Kim, T.I., Jeong, Y.H., and Chang, S.H., An Experimental Study on CHF Enhancement in Flow Boiling Using Al2O3 Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 1015–1022.

    Article  Google Scholar 

  24. Kim, F.J., Mckerll, T., Buongiorno, J., and Hu, L., Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux ofWater at Low Pressure, ASME J. Heat Transfer, 2008, vol. 130, no. 4, 044501.

    Article  Google Scholar 

  25. Kamiyama, S. and Ishimoto, J., Boiling Two-Phase Flows of Magnetic Fluid in a Non-Uniform Magnetic Field, J. Magn. Magn. Mater., 1995, vol. 149, pp. 125–131.

    Article  ADS  Google Scholar 

  26. Arias, F.J., Film Boiling in Magnetic Field in Liquid Metals with Particular Reference to Fusion Reactor Project, J. Fusion Energy, 2010, vol. 29, pp. 130–133.

    Article  ADS  Google Scholar 

  27. Ishimoto, J., Stability of the Boiling Two-Phase Flow of a Magnetic Fluid, ASME J. Appl. Mech., 2007, vol. 74, pp. 1187–1194.

    Article  ADS  Google Scholar 

  28. Roy, R.P., Kang, S., Zarate, U.A., and Laporta, A., Turbulent Subcooled Boiling Flow—Experiments and Simulations, ASME J. Heat Transfer, 2000, vol. 124, pp. 73–93.

    Article  Google Scholar 

  29. Tu, J.Y. and Yeoh, G.H., On Numerical Modeling of Low Pressure Subcooled Boiling Flows, Int. J. Heat Transfer, 2002, vol. 45, pp. 1197–1209.

    Article  MATH  Google Scholar 

  30. Zborowski, M. and Chalmers, J., Magnetic Cell Separation, Amsterdam: Elsevier, 2008.

    Google Scholar 

  31. Hamilton, R.L. and Crosser, O.K., Thermal Conductivity of Heterogeneous Two-Component System, Ind. Eng. Chem. Fund., 1962, vol. 1, pp. 187–191.

    Article  Google Scholar 

  32. Khanafer, K., Vafai, K., and Lightstone, M., Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. HeatMass Transfer, 2003, vol. 46, pp. 3639–3653.

    Article  MATH  Google Scholar 

  33. Kurul, N. and Podowski, Z., On the Modeling of Multidimensional Effects in Boiling Channels, ANS Proc. 27th National Heat Transfer Conf., July 28–31, Minneapolis, MN, 1991.

    Google Scholar 

  34. Kurul, N. and Podowski, Z., Multidimensional Effects on Forced Convection Subcooled Boiling, Proc. Ninth Int. Heat Transfer Conf., vol. 2, August 19–24, Jerusalem, Israel, 1990, pp. 21–26.

    Google Scholar 

  35. Egorov, Y. and Menter, F., Experimental Implementation of the RPIWall BoilingModel in CFX-5.6, Techn. Report ANSYS/TR-04-10, 2004.

    Google Scholar 

  36. Tolubinski, V.I. and Kostanchuk, D.M., Vapor Bubbles Growth Rate and Heat Transfer Intensity at SubcooledWater Boiling, Fourth Int. Heat Transfer Conf., Paris, France, 1970.

    Google Scholar 

  37. Lemmert, M. and Chawla, J.M., Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient, Heat Transfer and Boiling, Hahne, E. and Grigull, U., Eds., Academic Press, 1977.

    Google Scholar 

  38. Victor, H., Del Valle, M., and Kenning, D.B.R., Subcooled Flow Boiling at High Heat Flux, Int. J. Heat Mass Transfer, 1985, vol. 28, pp. 1907–1920.

    Article  Google Scholar 

  39. Ishii, M. and Zuber, N., Drag Coefficient and RelativeVelocity in Bubbly, Droplet or Particulate Flows, AIChE J., 1979, vol. 25, pp. 843–855.

    Google Scholar 

  40. Schiller, L. and Naumann, A., VDI Zeits, 1933, vol. 77, p.318.

    Google Scholar 

  41. Tomiyama, A., Struggle with Computational BubbleDynamics, Proc. Third Int. Conf. on Multiphase Flow, ICMF’98, June 8–12, Lyon, France, 1998.

    Google Scholar 

  42. Antal, S.P., Lahey, R.T., and Flaherty, J.E., Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–652.

    Article  MATH  Google Scholar 

  43. Zuber, N., On the Dispersed Two-Phase Flow in the Laminar Flow Regime, Chem. Eng. Sci., 1964, vol. 19, pp. 897–917.

    Article  Google Scholar 

  44. Hsu, Y.Y., On the Size of Range of Active Nucleation Cavities on a Heating Surface, Trans. ASME J. Heat Transfer, 1962, vol. 84, p.207.

    Article  Google Scholar 

  45. Jakob, M., Heat Transfer, vol. 1, New York:Wiley, 1958.

    Google Scholar 

  46. Zuber, N., Nucleate Boiling—The Region of Isolated Bubbles-Similarly with Natural Convection, Int. J. Heat Mass Transfer, 1963, vol. 6, p. 53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadpourfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpourfard, M., Aminfar, H. & Karimi, M. Numerical investigation of subcooled boiling characteristics of magnetic nanofluid under the effect of quadrupole magnetic field. J. Engin. Thermophys. 26, 427–446 (2017). https://doi.org/10.1134/S1810232817030122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817030122

Navigation