Skip to main content
Log in

Superoxide Dismutase and Clopidogrel: A Potential Role in Peripheral Arterial Disease Treatment

  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress plays a crucial role in the pathogenesis of peripheral artery disease (PAD). This study aimed to investigate the effect of clopidogrel on oxidative stress in PAD patients. Seventy subjects were divided into three groups: PAD patients before treatment (B-PAD), PAD patients after treatment with clopidogrel (A-PAD), and healthy controls. Serum levels of superoxide dismutase (SOD), copper (Cu), zinc (Zn), manganese (Mn), and oxidized protein were measured. SOD activities were also determined. The results showed that SOD activities, and SOD specific activities were significantly decreased in PAD patients compared to healthy individuals. After treatment with clopidogrel, SOD activities, and SOD specific activities were continuously decrease in PAD patients. The SOD and oxidized protein concentrations were significantly increased in PAD patients compared to healthy individuals. After treatment with clopidogrel, the oxidized protein concentration was significantly decreased, while SOD concentration was significantly increased in PAD patients. These findings suggest that the treatment by clopidogrel stimulated the production of the enzyme but the ratio of active enzyme remained low. The decrease in oxidized protein can be explained by the treatment having antioxidant efficacy that may have compensated for the deficiency in enzyme activity and led to a decrease in oxidized protein. Additionally, the results of this study provide promising evidence that oxidative stress biomarkers including SOD concentration, T-SOD activity, Mn-SOD activity, and oxidized protein levels have potential utility in the diagnosis and management of PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bhatt, D.L., Eagle, K.A., Ohman, E.M., Hirsch, A.T., Goto, S., Mahoney, E.M., Wilson, P.W.F., Alberts, M.J., D’agostino, R., and Liau, C., Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis, JAMA, 2010, vol. 304, pp. 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  2. Balogh, O., Péntek, M., Gulácsi, L., Farkas, K., Járai, Z., Landi, A., Pécsvárady, Z., and Brodszky, V., Quality of life and burden of disease in peripheral arterial disease: A study among Hungarian patients, Orvosi Hetilap, 2013, vol. 154, no. 12, pp. 464–470. https://doi.org/10.1556/oh.2013.29567

    Article  PubMed  Google Scholar 

  3. Aboyans, V., Ricco, J., Bartelink, M., Björck, M., Brodmann, M., Cohner, T., Collet, J., Czerny, M., De Carlo, M., Debus, S., et al., 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS), Kardiol. Pol., 2017, vol. 75, no. 11, pp. 1065–1160. https://doi.org/10.5603/kp.2017.0216

    Article  PubMed  Google Scholar 

  4. Allison, M.A., Ho, E., Denenberg, J.O., Langer, R.D., Newman, A.B., Fabsitz, R.R., and Criqui, M.H., Ethnic-specific prevalence of peripheral arterial disease in the United States, Am. J. Preventive Med., 2007, vol. 32, no. 4, pp. 328–333. https://doi.org/10.1016/j.amepre.2006.12.010

    Article  Google Scholar 

  5. Anand, S.S., Caron, F., Eikelboom, J.W., Bosch, J., Dyal, L., Aboyans, V., Abola, M.T., Branch, K.R.H., Keltai, K., Bhatt, D.L., et al., Major adverse limb events and mortality in patients with peripheral artery disease, J. Am. Coll. Cardiol., 2018, vol. 71, no. 20, pp. 2306–2315. https://doi.org/10.1016/j.jacc.2018.03.008

    Article  PubMed  Google Scholar 

  6. Sigvant, B., Wiberg-Hedman, K., Bergqvist, D., Rolandsson, O., Andersson, B., Persson, E., and Wahlberg, E., A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences, J. Vasc. Surg., 2007, vol. 45, no. 6, pp. 1185–1191. https://doi.org/10.1016/j.jvs.2007.02.004

    Article  PubMed  Google Scholar 

  7. Song, P., Rudan, D., Zhu, Ya., Fowkes, F.J.I., Rahimi, K., Fowkes, F.G.R., and Rudan, I., Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis, Lancet Global Health, 2019, vol. 7, no. 8, pp. e1020–e1030. https://doi.org/10.1016/s2214-109x(19)30255-4

    Article  PubMed  Google Scholar 

  8. Fowkes, F.G.R., Rudan, D., Rudan, I., Aboyans, V., Denenberg, J.O., McDermott, M.M., Norman, P.E., Sampson, U.K.A., Williams, L.J., Mensah, G.A., and Criqui, M.H., Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis, Lancet, 2013, vol. 382, no. 9901, pp. 1329–1340. https://doi.org/10.1016/s0140-6736(13)61249-0

    Article  PubMed  Google Scholar 

  9. Criqui, M.H., Denenberg, J.O., Langer, R.D., and Fronek, A., The epidemiology of peripheral arterial disease: importance of identifying the population at risk, Vasc. Med., 1997, vol. 2, no. 3, pp. 221–226. https://doi.org/10.1177/1358863x9700200310

    Article  CAS  PubMed  Google Scholar 

  10. Abaraogu, U.O., Ezenwankwo, E.F., Dall, P.M., and Seenan, C.A., Living a burdensome and demanding life: a qualitative systematic review of the patients experiences of peripheral arterial disease, PLoS One, 2018, vol. 13, no. 11, p. e0207456. https://doi.org/10.1371/journal.pone.0207456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dean, L. and Kane, M., Clopidogrel therapy and CYP2C19 genotype, 2018.

  12. Lee, C.R., Luzum, J.A., Sangkuhl, K., Gammal, R.S., Sabatine, M.S., Stein, C.M., Kisor, D.F., Limdi, N.A., Lee, Ye.M., Scott, S.A., et al., Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update, Clin. Pharmacol. Ther., 2022, vol. 112, no. 5, pp. 959–967. https://doi.org/10.1002/cpt.2526

    Article  CAS  PubMed  Google Scholar 

  13. Rao, K.K.K. and Lakshmi, K.R., Design, development, and evaluation of clopidogrel bisulfate floating tablets, Int. J. Pharm. Invest., 2014, vol. 4, no. 1, p. 19. https://doi.org/10.4103/2230-973x.127736

    Article  Google Scholar 

  14. The clopidogrel in unstable angina to prevent recurrent events trial investigators, effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation, New Engl. J. Med., 2001, vol. 345, pp. 494–502.

    Article  Google Scholar 

  15. Brouwer, J.M.J.L., Nijenhuis, M., Soree, B., Guchela-ar, H., Swen, J.J., van Schaik, R.H.N., van der Weide, J., Rongen, G.A.P.J.M., Buunk, A., and de Boer-Ve-ger, N.J., Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs, Eur. J. Hum. Genet., 2022, vol. 30, no. 10, pp. 1114–1120. https://doi.org/10.1038/s41431-021-01004-7

    Article  CAS  PubMed  Google Scholar 

  16. Al-Ani, A.W., Adenosine deaminase and guanine deaminase: the potential role in diabetic foot ulcers, Iraqi J. Sci., 2023, pp. 4930–4941. https://doi.org/10.24996/ijs.2023.64.10.4

  17. Al-Hameed, N. M. and Al-Ani, A.W., Assessment of systemic oxidative stress and antioxidants in Iraqi women with newly diagnosed and tamoxifen-treated breast cancer, Eurasian Chem. Commun., 2022. https://doi.org/10.22034/ecc.2023.365482.1538

  18. Abd Al-Hameed, N.M. and Al-Ani, A.W., The role of monoamine oxidase and atherogenic index in newly diagnosed and tamoxifen treated women with breast cancer, J. Med. Chem. Sci., 2023, vol. 6, pp. 645–655.

    Google Scholar 

  19. Al-Ani, A.W. and Fadel, S.S., Arlyesterase activity of paraoxonase-1 enzyme in Iraqi patients with β-thalassemia minor, Ann. Trop. Med. Public Health, 2019, vol. 22, p. S243. https://doi.org/10.36295/asro.2019.220820

    Article  Google Scholar 

  20. Karmakar, A., Das, A.K., Ghosh, N., and Sil, P.C., Superoxide dismutase, in Antioxidants Effects in Health, Elsevier, 2022, pp. 139–166. https://doi.org/10.1016/b978-0-12-819096-8.00027-6

  21. Wang, H. and Ki, J., Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress, Eur. J. Protistol., 2020, vol. 74, p. 125689. https://doi.org/10.1016/j.ejop.2020.125689

    Article  PubMed  Google Scholar 

  22. Hasan, H.R. and Al-Ani, A.W., An economical source for peroxidase: maize cobs, Karbala Int. J. Mod. Sci., 2022, vol. 8, no. 2, pp. 112–122. https://doi.org/10.33640/2405-609x.3227

    Article  Google Scholar 

  23. Ali, S.S., Ahsan, H., Zia, M.K., Siddiqui, T., and Khan, F.H., Understanding oxidants and antioxidants: Classical team with new players, J. Food Biochem., 2020, vol. 44, no. 3, p. e13145. https://doi.org/10.1111/jfbc.13145

    Article  PubMed  Google Scholar 

  24. Hamed, A. and Hasan, A.W.A.-A., Superoxide dismutase activity in breast cancer patients treated with anastrozole, Onkol. Radioter., 2023, vol. 17, pp. 1–10.

    Google Scholar 

  25. Correia, P.R.M., De Oliveira, E., and Oliveira, P.V., Simultaneous determination of manganese and selenium in serum by electrothermal atomic absorption spectrometry, Talanta, 2002, vol. 57, no. 3, pp. 527–535. https://doi.org/10.1016/s0039-9140(02)00069-3

    Article  CAS  PubMed  Google Scholar 

  26. Mesquita, C.S., Oliveira, R., Bento, F., Geraldo, D., Rodrigues, J.V., and Marcos, J.C., Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins, Anal. Biochem., 2014, vol. 458, pp. 69–71. https://doi.org/10.1016/j.ab.2014.04.034

    Article  CAS  PubMed  Google Scholar 

  27. Perry, J.J.P., Shin, D.S., Getzoff, E.D., and Tainer, J.A., The structural biochemistry of the superoxide dismutases, Biochim. Biophys. Acta, Proteins Proteomics, 2010, vol. 1804, no. 2, pp. 245–262. https://doi.org/10.1016/j.bbapap.2009.11.004

    Article  CAS  Google Scholar 

  28. Amrita, J., Mahajan, M., Bhanwer, A.J.S., and Mohan, G., Oxidative stress: an effective prognostic tool for an early detection of cardiovascular disease in menopausal women, Biochem. Res. Int., 2016, vol. 2016, p. 6157605. https://doi.org/10.1155/2016/6157605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Comhair, S.A.A., Bhathena, P.R., Dweik, R.A., Kavuru, M., and Erzurum, S.C., Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response, Lancet, 2000, vol. 355, no. 9204, p. 624. https://doi.org/10.1016/s0140-6736(99)04736-4

    Article  CAS  PubMed  Google Scholar 

  30. Li, X., Lin, Yi., Wang, S., Zhou, S., Ju, J., Wang, X., Chen, Ya., and Xia, M., Extracellular superoxide dismutase is associated with left ventricular geometry and heart failure in patients with cardiovascular disease, J. Am. Heart Assoc., 2020, vol. 9, no. 15, p. e016862. https://doi.org/10.1161/jaha.120.016862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crawford, A., Fassett, R.G., Coombes, J.S., Kunde, D.A., Ahuja, K.D.K., Robertson, I.K., Ball, M.J., and Geraghty, D.P., Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease, Nephrol. Dialysis Transplant., 2011, vol. 26, no. 9, pp. 2806–2813. https://doi.org/10.1093/ndt/gfq828

    Article  CAS  Google Scholar 

  32. Ściskalska, M., Ołdakowska, M., Marek, G., and Milnerowicz, H., Changes in the activity and concentration of superoxide dismutase isoenzymes (Cu/Zn SOD, Mn-SOD) in the blood of healthy subjects and patients with acute pancreatitis, Antioxidants, 2020, vol. 9, no. 10, p. 948. https://doi.org/10.3390/antiox9100948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia, Z., Guo, Z., Nagareddy, P.R., Yuen, V., Yeung, E., and Mcneill, J.H., Antioxidant N-acetylcysteine restores myocardial Mn-SOD activity and attenuates myocardial dysfunction in diabetic rats, Eur. J. Pharmacol., 2006, vol. 544, nos. 1–3, pp. 118–125. https://doi.org/10.1016/j.ejphar.2006.06.033

    Article  CAS  PubMed  Google Scholar 

  34. Hadi, N.R., Mohammad, B.I., Ajeena, I.M., and Sahib, H.H., Antiatherosclerotic potential of clopidogrel: antioxidant and anti-inflammatory approaches, BioMed Res. Int., 2013, vol. 2013, p. 790263. https://doi.org/10.1155/2013/790263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heitzer, T., Rudolph, V., Schwedhelm, E., Karstens, M., Sydow, K., Ortak, M., Tschentscher, P., Meinertz, T., Böger, R., and Baldus, S., Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease, Arterioscler., Thromb., Vasc. Biol., 2006, vol. 26, no. 7, pp. 1648–1652. https://doi.org/10.1161/01.atv.0000225288.74170.dc

    Article  CAS  PubMed  Google Scholar 

  36. Davignon, J., Jacob, R.F., and Mason, R.P., The antioxidant effects of statins, Coronary Artery Dis., 2004, vol. 15, no. 5, pp. 251–258. https://doi.org/10.1097/01.mca.0000131573.31966.34

    Article  Google Scholar 

  37. Montecucco, F. and Mach, F., Statins, ACE inhibitors and ARBs in cardiovascular disease, Best Pract. Res. Clin. Endocrinol. Metab., 2009, vol. 23, no. 3, pp. 389–400. https://doi.org/10.1016/j.beem.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  38. Coombes, J.S. and Fassett, R.G., Antioxidant therapy in hemodialysis patients: a systematic review, Kidney Int., 2012, vol. 81, no. 3, pp. 233–246. https://doi.org/10.1038/ki.2011.341

    Article  CAS  PubMed  Google Scholar 

  39. Park, S., Pekas, E.J., Headid, R.J., Son, W., Woo-den, T.K., Song, J., Layec, G., Yadav, S.K., Mishra, P.K., and Pipinos, I.I., Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease, Am. J. Physiol.: Heart Circulatory Physiol., 2020, vol. 319, no. 2, pp. H456–H467. https://doi.org/10.1152/ajpheart.00235.2020

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the University of Baghdad, College of Science for supporting this manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasameen Ali Fakhri.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects. Data analysis was performed from the open-access database Pulse Transit Time PPG Dataset (version 1.1.0) [9]. According to the Pulse Transit Time PPG Dataset data, all studies were conducted in accordance with the principles of biomedical ethics set out in the 1964 Declaration of Helsinki and its subsequent amendments, and all participants provided written informed consent.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, Y.A., Al-Ani, A.W. Superoxide Dismutase and Clopidogrel: A Potential Role in Peripheral Arterial Disease Treatment. Dokl Biochem Biophys (2024). https://doi.org/10.1134/S1607672924600088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1607672924600088

Keywords:

Navigation