Skip to main content
Log in

On the Parametric Stability of the Isosceles Triangular Libration Points in the Planar Elliptical Charged Restricted Three-body Problem

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider the planar charged restricted elliptic three-body problem (CHRETBP). In this work we consider the parametric stability of the isosceles triangle equilibrium solution denoted by \(L_{4}^{iso}\). We construct the boundary surfaces of the stability/instability regions in the space of the parameters \(\mu\), \(\beta\) and \(e\), which are parameters of the mass, charges associated to the primaries and the eccentricity of the elliptic orbit, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alfaro, F. and Pérez-Chavela, E., Relative Equilibria in the Charged \(n\)-Body Problem, Can. Appl. Math. Q., 2002, vol. 10, no. 1, pp. 1–13.

    MathSciNet  MATH  Google Scholar 

  2. Alfaro, F. and Pérez-Chavela, E., Linear Stability of Relative Equilibria in the Charged Three-Body Problem, J. Differential Equations, 2008, vol. 245, no. 7, pp. 1923–1944.

    Article  MathSciNet  Google Scholar 

  3. Dionysiou, D. and Antonacopoulos, G., Relativistic Dynamics for Three Charged Particles, Celestial Mech., 1981, vol. 23, no. 2, pp. 109–117.

    Article  MathSciNet  Google Scholar 

  4. Atela, P., The Charged Isosceles \(3\)-Body Problem, in Hamiltonian Dynamical Systems (Boulder, CO, 1987), K. R. Meyer, D. G. Saari (Eds.), Contemp. Math., vol. 81, Providence, R.I.: AMS, 1988, pp. 43–58.

    Google Scholar 

  5. Bengochea, A. and Vidal, C., On a Planar Circular Restricted Charged Three-Body Problem, Astrophys. Space Sci., 2015, vol. 358, Art. No. 9, 15 pp.

    Article  Google Scholar 

  6. Bennet, A., Analytical Determination of Characteristic Exponents, Progr. Atronaut. Rocketry, 1966, vol. 17, pp. 101–113.

    MATH  Google Scholar 

  7. Brandão Dias, L. and Cabral, H. E., Parametric Stability in a Sitnikov-Like Restricted \(P\)-Body Problem, J. Dynam. Differential Equations, 2018, vol. 30, no. 1, pp. 81–92.

    MathSciNet  Google Scholar 

  8. Casasayas, J. and Nunes, A., A Restricted Charged Four-Body Problem, Celestial Mech. Dynam. Astronom., 1989/90, vol. 47, no. 3, pp. 245–266.

    MathSciNet  MATH  Google Scholar 

  9. Castro Ortega, A. and Lacomba, E. A., Non-Hyperbolic Equilibria in the Charged Collinear Three-Body Problem, J. Dynam. Differential Equations, 2012, vol. 24, no. 1, pp. 85–100.

    Article  MathSciNet  Google Scholar 

  10. Castro Ortega, A. and Falconi, M., Schubart Solutions in the Charged Collinear Three-Body Problem, J. Dynam. Differential Equations, 2016, vol. 28, no. 2, pp. 519–532.

    Article  MathSciNet  Google Scholar 

  11. Cruz Araujo, G. and Cabral, H. E., Parametric Stability in a \(P+2\)-Body Problem, J. Dynam. Differential Equations, 2018, vol. 30, no. 2, pp. 719–742.

    MathSciNet  MATH  Google Scholar 

  12. Danby, J. M. A., Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies, Astronom. J., 1964, vol. 69, no. 2, pp. 165–172.

    MathSciNet  Google Scholar 

  13. Ivanov, A. P. and Sokol’skii, A. G., On the Stability of a Nonautonomous Hamiltonian System under Second-Order Resonance, J. Appl. Math. Mech., 1980, vol. 44, no. 5, pp. 574–581; see also: Prikl. Mat. Mekh., 1980, vol. 44, no. 5, pp. 90-811.

    MathSciNet  Google Scholar 

  14. Llibre, J., Paşca, D., and Valls, C., Qualitative Study of a Charged Restricted Three-Body Problem, J. Differential Equations, 2013, vol. 255, no. 3, pp. 326–338.

    Article  MathSciNet  Google Scholar 

  15. Mansilla, J. E. and Vidal, C., Geometric Interpretation for the Spectral Stability in the Charged Three-Body Problem, Celestial Mech. Dynam. Astronom., 2012, vol. 113, no. 2, pp. 205–213.

    Article  MathSciNet  Google Scholar 

  16. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    MATH  Google Scholar 

  17. Markeev, A. P., On One Special Case of Parametric Resonance in Problems of Celestial Mechanics, Astron. Lett., 2005, vol. 31, no. 5, pp. 350–356; see also: Pis’ma v Astron. Zh., 2005, vol. 31, no. 5, pp. 90-388.

    Article  Google Scholar 

  18. Markeyev, A. P., Multiple Parametric Resonance in Hamiltonian Systems, J. Appl. Math. Mech., 2006, vol. 70, no. 2, pp. 176–194; see also: Prikl. Mat. Mekh., 2006, vol. 70, no. 2, pp. 90-200.

    Article  MathSciNet  Google Scholar 

  19. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 (Russian).

    Google Scholar 

  20. Nayfeh, A. H. and Kamel, A. A., Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies, AIAA J., 1970, vol. 8, no. 2, pp. 221–223.

    Article  Google Scholar 

  21. Pérez-Chavela, E., Saari, D. G., Susin, A., and Yan, Zh., Central Configurations in the Charged Three Body Problem, in Hamiltonian Dynamics and Celestial Mechanics (Seattle,Wash., 1995), Contemp. Math., vol. 198, Providence, R.I.: AMS, 1996, pp. 137–153.

    Google Scholar 

  22. Szebehely, V. and Giacaglia, G. E. O., On the Elliptic Restricted Problem of Three Bodies, Astron. J., 1964, vol. 69, pp. 230–235.

    MathSciNet  Google Scholar 

  23. Valeriano, L. R., Parametric Stability in Robe’s Problem, Regul. Chaotic Dyn., 2016, vol. 21, no. 1, pp. 126–135.

    Article  MathSciNet  Google Scholar 

  24. Vidal, C. and Vidarte, J., Stability of the Equilibrium Solutions in a Charged Restricted Circular Three-Body Problem, J. Differential Equations, 2016, vol. 260, no. 6, pp. 5128–5173.

    Article  MathSciNet  Google Scholar 

  25. Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., New York: Wiley, 1975.

    Google Scholar 

  26. Zimovshchikov, A. S. and Tkhai, V. N., Instability of Libration Points and Resonance Phenomena in the Phopogravitational Elliptic Restrcted Three-Body Problem, Sol. Syst. Res., 2004, vol. 38, no. 2, pp. 155–164.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present paper is part of the thesis of the first author. We thank the referees for the careful reading of our manuscript and for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yocelyn Pérez-Rothen, Lucas Rezende Valeriano or Claudio Vidal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34K17, 34K18, 34K20

APPENDIX A. COEFFICIENTS OF HAMILTONIAN FUNCTIONS FOR THE CASE OF COMBINED RESONANCE $$\omega_{1}-\omega_{2}=0$$

Coeficientes of \(\mathcal{H}_{1}\) and \(\mathcal{H}_{2}\)

$$\displaystyle h^{(1)}_{2000}=\frac{-3\sqrt{8\beta_{0}^{4}+10\beta_{0}^{2}-3}}{4\beta_{0}\Delta_{1}^{7/2}\Delta_{2}^{3/2}}((-80\beta_{0}^{8}+992\beta_{0}^{6}-3160\beta_{0}^{4}+2040\beta_{0}^{2}-333\beta_{1}+4\beta_{0}(16\beta_{0}^{8}-164\beta_{0}^{6}+172\beta_{0}^{4}$$
$$\displaystyle-69\beta_{0}^{2}+9)\cos\nu),$$
$$\displaystyle h^{(1)}_{1100}=\frac{-\sqrt{-64\beta_{0}^{8}+496\beta_{0}^{6}+600\beta_{0}^{4}-396\beta_{0}^{2}+54}}{4\beta_{0}\Delta_{2}^{7/2}\Delta_{2}^{3/2}}\left((2(80\beta_{0}^{6}-748\beta_{0}^{4}+960\beta_{0}^{2}-171)\beta_{1}+\beta_{0}(16\beta_{0}^{6}+620\beta_{0}^{4}\right.$$
$$\displaystyle\left.-552\beta_{0}^{2}+99)\cos\nu)\right),$$
$$\displaystyle h^{(1)}_{1010}=\frac{\sqrt{-32\beta_{0}^{8}+248\beta_{0}^{6}+300\beta_{0}^{4}-198\beta_{0}^{2}+27}}{2\beta_{0}\Delta_{1}^{5/2}\Delta_{2}^{3/2}}\left((\beta_{0}(40\beta_{0}^{4}-22\beta_{0}^{2}+3)\cos\nu-2(16\beta_{0}^{4}-86\beta_{0}^{2}+33)\beta_{1})\right)$$
$$\displaystyle h^{(1)}_{1001}=\frac{\sqrt{16\beta_{0}^{4}+20\beta_{0}^{2}-6}}{2\beta_{0}\Delta_{1}^{5/2}\Delta_{2}^{3/2}}\left(((-56\beta_{0}^{6}+484\beta_{0}^{4}-642\beta_{0}^{2}+135)\beta_{1}+\beta_{0}(16\beta_{0}^{6}-196\beta_{0}^{4}+156\beta_{0}^{2}-27)\cos\nu)\right),$$
$$\displaystyle h^{(1)}_{0200}=\frac{-\left(\left(80\beta_{0}^{8}-1360\beta_{0}^{6}+6072\beta_{0}^{4}-1764\beta_{0}^{2}+81\right)\beta_{1}+2\beta_{0}(16\beta_{0}^{8}-100\beta_{0}^{6}-1236\beta_{0}^{4}+639\beta_{0}^{2}-81)\cos\nu\right)}{2\beta_{0}\Delta_{1}^{3}\Delta_{2}},$$
$$\displaystyle h^{(1)}_{0110}=-\frac{3\sqrt{2}\left(\left(8\beta_{0}^{6}-84\beta_{0}^{4}+106\beta_{0}^{2}-21\right)\beta_{1}+\beta_{0}\left(40\beta_{0}^{4}-22\beta_{0}^{2}+3\right)\cos\nu\right)}{\beta_{0}\left(2\beta_{0}^{2}+3\right)^{2}\left(4\beta_{0}^{2}-1\right)},$$
$$\displaystyle h^{(1)}_{0101}=\frac{\sqrt{-16\beta_{0}^{6}+148\beta_{0}^{4}-72\beta_{0}^{2}+9}\left(2\left(16\beta_{0}^{4}-98\beta_{0}^{2}+15\right)\beta_{1}+\beta_{0}\left(8\beta_{0}^{4}+82\beta_{0}^{2}-21\right)\cos\nu\right)}{2\beta_{0}\left(2\beta_{0}^{2}+3\right)^{2}\left(4\beta_{0}^{2}-1\right)^{3/2}},$$
$$\displaystyle h^{(1)}_{0020}=\frac{\left(4\beta_{0}^{4}-32\beta_{0}^{2}+9\right)\beta_{1}+\left(2\beta_{0}^{3}-8\beta_{0}^{5}\right)\cos\nu}{-8\beta_{0}^{5}-10\beta_{0}^{3}+3\beta_{0}},$$
$$\displaystyle h^{(1)}_{0011}=\frac{\sqrt{-16\beta_{0}^{6}+148\beta_{0}^{4}-72\beta_{0}^{2}+9}\left(2\left(4\beta_{0}^{2}-5\right)\beta_{1}+\left(\beta_{0}-4\beta_{0}^{3}\right)\cos\nu\right)}{\sqrt{2}\beta_{0}\left(2\beta_{0}^{2}+3\right)\left(4\beta_{0}^{2}-1\right)^{3/2}},$$
$$\displaystyle h^{(1)}_{0002}=\frac{3\left(\left(4\beta_{0}^{4}-20\beta_{0}^{2}+5\right)\beta_{1}+2\beta_{0}\left(4\beta_{0}^{2}-1\right)\cos\nu\right)}{2\beta_{0}\left(8\beta_{0}^{4}+10\beta_{0}^{2}-3\right)},$$
$$\displaystyle h^{(2)}_{2000}=\frac{1}{4\beta_{0}^{2}\left(2\beta_{0}^{2}+3\right)^{7/2}\left(4\beta_{0}^{2}-1\right)^{5/2}}\left(3\sqrt{8\beta_{0}^{4}+10\beta_{0}^{2}-3}(256\beta_{0}^{12}+640\beta_{0}^{11}\beta_{2}-640\beta_{0}^{10}\beta_{1}^{2}-2688\beta_{0}^{10}\right.$$
$$\displaystyle\left.-8096\beta_{0}^{9}\beta_{2}+7248\beta_{0}^{8}\beta_{1}^{2}+3408\beta_{0}^{8}+27264\beta_{0}^{7}\beta_{2}-19296\beta_{0}^{6}\beta_{1}^{2}-1792\beta_{0}^{6}-22640\beta_{0}^{5}\beta_{2}\right.$$
$$\displaystyle\left.+4152\beta_{0}^{4}\beta_{1}^{2}+420\beta_{0}^{4}+6744\beta_{0}^{3}\beta_{2}+1872\beta_{0}^{2}\beta_{1}^{2}-36\beta_{0}^{2}-666\beta_{0}\beta_{2}-459\beta_{1}^{2}+4(1-4\beta_{0}^{2})^{2}(4\beta_{0}^{6}\right.$$
$$\displaystyle\left.-40\beta_{0}^{4}+33\beta_{0}^{2}-9)\beta_{0}^{2}\cos 2\nu-2(320\beta_{0}^{10}-4048\beta_{0}^{8}+13632\beta_{0}^{6}-11320\beta_{0}^{4}+3372\beta_{0}^{2}\right.$$
$$\displaystyle\left.-333)\beta_{0}\beta_{1}\cos\nu)\right),$$
$$\displaystyle h^{(2)}_{1100}=\frac{1}{4\beta_{0}^{2}\left(2\beta_{0}^{2}+3\right)^{7/2}\left(4\beta_{0}^{2}-1\right)^{5/2}}\left(\sqrt{-64\beta_{0}^{8}+496\beta_{0}^{6}+600\beta_{0}^{4}-396\beta_{0}^{2}+54}(64\beta_{0}^{10}-1280\beta_{0}^{9}\beta_{2}\right.$$
$$\displaystyle\left.+1280\beta_{0}^{8}\beta_{1}^{2}+2464\beta_{0}^{8}+12288\beta_{0}^{7}\beta_{2}-10080\beta_{0}^{6}\beta_{1}^{2}-2828\beta_{0}^{6}-18352\beta_{0}^{5}\beta_{2}+6360\beta_{0}^{4}\beta_{1}^{2}+948\beta_{0}^{4}\right.$$
$$\displaystyle\left.+6576\beta_{0}^{3}\beta_{2}-1008\beta_{0}^{2}\beta_{1}^{2}-99\beta_{0}^{2}-684\beta_{0}\beta_{2}+54\beta_{1}^{2}+(1-4\beta_{0}^{2})^{2}(4\beta_{0}^{4}+156\beta_{0}^{2}-99)\beta_{0}^{2}\cos 2\nu\right.$$
$$\displaystyle\left.+4(320\beta_{0}^{8}-3072\beta_{0}^{6}+4588\beta_{0}^{4}-1644\beta_{0}^{2}+171)\beta_{0}\beta_{1}\cos\nu)\right),$$
$$\displaystyle h^{(2)}_{1010}=-\frac{1}{2\beta_{0}^{2}\left(8\beta_{0}^{4}+10\beta_{0}^{2}-3\right)^{5/2}}\left(\sqrt{-32\beta_{0}^{8}+248\beta_{0}^{6}+300\beta_{0}^{4}-198\beta_{0}^{2}+27}(160\beta_{0}^{8}+256\beta_{0}^{7}\beta_{2}\right.$$
$$\displaystyle\left.-256\beta_{0}^{6}\beta_{1}^{2}-128\beta_{0}^{6}-1440\beta_{0}^{5}\beta_{2}+1152\beta_{0}^{4}\beta_{0}^{2}+34\beta_{0}^{4}+872\beta_{0}^{3}\beta_{2}+132\beta_{0}^{2}\beta_{1}^{2}-3\beta_{0}^{2}-132\beta_{0}\beta_{2}\right.$$
$$\displaystyle\left.-126\beta_{1}^{2}+(10\beta_{0}^{2}-3)(1-4\beta_{0}^{2})^{2}\beta_{0}^{2}\cos 2\nu-4(64\beta_{0}^{6}-360\beta_{0}^{4}+218\beta_{0}^{2}-33)\beta_{0}\beta_{1}\cos\nu)\right),$$
$$\displaystyle h^{(2)}_{1001}=\frac{1}{\sqrt{2}\beta_{0}^{2}\left(8\beta_{0}^{4}+10\beta_{0}^{2}-3\right)^{2}}\left(-64\beta_{0}^{10}-448\beta_{0}^{9}\beta_{2}+448\beta_{0}^{8}\beta_{1}^{2}+800\beta_{0}^{8}-27\beta_{0}^{2}-3288\beta_{0}^{6}\beta_{1}^{2}-820\beta_{0}^{6}\right.$$
$$\displaystyle\left.-6104\beta_{0}^{5}\beta_{2}+2388\beta_{0}^{4}\beta_{1}^{2}++264\beta_{0}^{4}+2364\beta_{0}^{3}\beta_{2}-81\beta_{1}^{2}+3984\beta_{0}^{7}\beta_{2}-270\beta_{0}\beta_{2}-90\beta_{0}^{2}\beta_{1}^{2}\right.$$
$$\displaystyle\left.-(1-4\beta_{0}^{2})^{2}(4\beta_{0}^{4}-48\beta_{0}^{2}+27)\beta_{0}^{2}\cos 2\nu+2(224\beta_{0}^{8}-1992\beta_{0}^{6}+3052\beta_{0}^{4}-1182\beta_{0}^{2}+135)\beta_{0}\beta_{1}\cos\nu\right),$$
$$\displaystyle h^{(2)}_{0200}=\frac{1}{2(2\beta_{0}^{2}+3)^{3}(\beta_{0}-4\beta_{0}^{3})^{2}}\left(128\beta_{0}^{12}-640\beta_{0}^{11}\beta_{2}+640\beta_{0}^{10}\beta_{1}^{2}-832\beta_{0}^{10}+7584\beta_{0}^{6}-8784\beta_{0}^{8}\beta_{1}^{2}\right.$$
$$\displaystyle\left.-9688\beta_{0}^{8}-51296\beta_{0}^{7}\beta_{2}+30000\beta_{0}^{6}\beta_{1}^{2}+11040\beta_{0}^{9}\beta_{2}+26256\beta_{0}^{5}\beta_{2}-8712\beta_{0}^{4}\beta_{1}^{2}-1926\beta_{0}^{4}\right.$$
$$\displaystyle\left.-4176\beta_{0}^{3}\beta_{2}-540\beta_{0}^{2}\beta_{1}^{2}+162\beta_{0}^{2}+162\beta_{0}\beta_{2}+243\beta_{1}^{2}+2(1-4\beta_{0}^{2})^{2}(4\beta_{0}^{6}-24\beta_{0}^{4}-315\beta_{0}^{2}\right.$$
$$\displaystyle\left.+81)\beta_{0}^{2}\cos 2\nu+2(320\beta_{0}^{10}-5520\beta_{0}^{8}+25648\beta_{0}^{6}-13128\beta_{0}^{4}+2088\beta_{0}^{2}-81)\beta_{0}\beta_{1}\cos\nu\right),$$
$$\displaystyle h^{(2)}_{0110}=\frac{1}{\beta_{0}^{2}(8\beta_{0}^{4}+10\beta_{0}^{2}-3)^{2}}\left(3\sqrt{2}(-64\beta_{0}^{9}\beta_{2}+64\beta_{0}^{8}\beta_{1}^{2}+160\beta_{0}^{8}+34\beta_{0}^{4}+688\beta_{0}^{7}\beta_{2}-128\beta_{0}^{6}-616\beta_{0}^{6}\beta_{1}^{2}\right.$$
$$\displaystyle\left.-1016\beta_{0}^{5}\beta_{2}+276\beta_{0}^{4}\beta_{1}^{2}+380\beta_{0}^{3}\beta_{2}-66\beta_{0}^{2}\beta_{1}^{2}-3\beta_{0}^{2}+9\beta_{1}^{2}+(10\beta_{0}^{2}-3)(1-4\beta_{0}^{2})^{2}\beta_{0}^{2}\cos 2\nu\right.$$
$$\displaystyle\left.-42\beta_{0}\beta_{2}+2(32\beta_{0}^{8}-344\beta_{0}^{6}+508\beta_{0}^{4}-190\beta_{0}^{2}+21)\beta_{0}\beta_{1}\cos\nu),\right)$$
$$\displaystyle h^{(2)}_{0101}=\frac{1}{2\beta_{0}^{2}(2\beta_{0}^{2}+3)^{2}(4\beta_{0}^{2}-1)^{5/2}}\left(\sqrt{-16\beta_{0}^{6}+148\beta_{0}^{4}-72\beta_{0}^{2}+9}(32\beta_{0}^{8}+21\beta_{0}^{2}-256\beta_{0}^{7}\beta_{2}+256\beta_{0}^{6}\beta_{1}^{2}\right.$$
$$\displaystyle\left.+320\beta_{0}^{6}+1632\beta_{0}^{5}\beta_{2}-960\beta_{0}^{4}\beta_{1}^{2}-166\beta_{0}^{4}-632\beta_{0}^{3}\beta_{2}+84\beta_{0}^{2}\beta_{1}^{2}+(2\beta_{0}^{2}+21)(1-4\beta_{0}^{2})^{2}\beta_{0}^{2}\cos 2\nu\right.$$
$$\displaystyle\left.+60\beta_{0}\beta_{2}+18\beta_{1}^{2}+4(64\beta_{0}^{6}-408\beta_{0}^{4}+158\beta_{0}^{2}-15)\beta_{0}\beta_{1}\cos\nu)\right),$$
$$\displaystyle h^{(2)}_{0020}=\frac{1}{(2\beta_{0}^{2}+3)(\beta_{0}-4\beta_{0}^{3})^{2}}\left(-32\beta_{0}^{8}-32\beta_{0}^{7}\beta_{2}+32\beta_{0}^{6}\beta_{1}^{2}+16\beta_{0}^{6}+264\beta_{0}^{5}\beta_{2}-2\beta_{0}^{4}-228\beta_{0}^{4}\beta_{1}^{2}-136\beta_{0}^{3}\beta_{2}\right.$$
$$\displaystyle\left.-48\beta_{0}^{2}\beta_{1}^{2}+18\beta_{0}\beta_{2}+27\beta_{1}^{2}-2(1-4\beta_{0}^{2})^{2}\beta_{0}^{4}\cos 2\nu+2(16\beta_{0}^{6}-132\beta_{0}^{4}+68\beta_{0}^{2}-9)\beta_{0}\beta_{1}\cos\nu\right),$$
$$\displaystyle h^{(2)}_{0011}=\frac{1}{\sqrt{2}\beta_{0}^{2}(2\beta_{0}^{2}+3)(4\beta_{0}^{2}-1)^{5/2}}\left(\sqrt{-16\beta_{0}^{6}+148\beta_{0}^{4}-72\beta_{0}^{2}+9}(16\beta_{0}^{6}+6\beta_{1}^{2}-64\beta_{0}^{4}\beta_{0}^{2}+64\beta_{0}^{5}\beta_{2}\right.$$
$$\displaystyle\left.-8\beta_{0}^{4}-96\beta_{0}^{3}\beta_{2}+24\beta_{0}^{2}\beta_{1}^{2}+\beta_{0}^{2}+20\beta_{0}\beta_{2}+(1-4\beta_{0}^{2})^{2}\beta_{0}^{2}\cos 2\nu-4(16\beta_{0}^{4}-24\beta_{0}^{2}+5)\beta_{0}\beta_{1}\cos\nu)\right),$$
$$\displaystyle h^{(2)}_{0002}=-\frac{3}{2(2\beta_{0}^{2}+3)(\beta_{0}-4\beta_{0}^{3})^{2}}\left(-32\beta_{0}^{7}\beta_{2}+32\beta_{0}^{6}\beta_{1}^{2}+32\beta_{0}^{6}+168\beta_{0}^{5}\beta_{2}-16\beta_{0}^{4}-100\beta_{0}^{4}\beta_{1}^{2}-80\beta_{0}^{3}\beta_{2}\right.$$
$$\displaystyle\left.+12\beta_{0}^{2}\beta_{1}^{2}+2\beta_{0}^{2}+10\beta_{0}\beta_{2}+3\beta_{1}^{2}+2(1-4\beta_{0}^{2})^{2}\beta_{0}^{2}\cos 2\nu+2(16\beta_{0}^{6}-84\beta_{0}^{4}+40\beta_{0}^{2}-5)\beta_{0}\beta_{1}\cos\nu\right).$$

where \(\Delta_{1}=\sqrt{-32\beta_{0}^{8}+248\beta_{0}^{6}+300\beta_{0}^{4}-198\beta_{0}^{2}+27}\), \(\Delta_{2}=\sqrt{-\left(2\beta_{0}^{2}+3\right)\left(16\beta_{0}^{6}-148\beta_{0}^{4}+72\beta_{0}^{2}-9\right)^{3}}\).

APPENDIX B. COEFFICIENTS OF HAMILTONIAN FUNCTIONS FOR THE CASE OF BASIC RESONANCE $$2\omega_{2}=1$$

Coefficients of \(\mathrm{H_{2}}\),\(\mathrm{H_{3}}\) and \(\mathrm{H_{4}}\)

$$\displaystyle\mathrm{h}^{(2)}_{2000}=-\frac{3}{4\beta_{0}^{4}}\left(\beta_{0}^{2}\cos^{2}\nu+2\beta_{0}\beta_{1}\cos\nu-2\beta_{0}\beta_{2}+3\beta_{1}^{2}\right),$$
$$\displaystyle\mathrm{h}^{(2)}_{1100}=\frac{1}{2\beta_{0}^{4}\left(4\beta_{0}^{2}-1\right)^{5/2}}\sqrt{3}\sqrt{-4\beta_{0}^{6}+49\beta_{0}^{4}-24\beta_{0}^{2}+3}\left(16\beta_{0}^{6}\cos^{2}\nu-\beta_{0}^{5}\beta_{2}+\beta_{0}^{5}\beta_{1}\cos\nu+16\beta_{0}^{4}\beta_{1}^{2}\right.$$
$$\displaystyle\left.-8\beta_{0}^{4}\cos^{2}\nu-12\beta_{0}^{3}\beta_{1}\cos\nu+12\beta_{0}^{3}\beta_{2}-18\beta_{0}^{2}\beta_{1}^{2}+\beta_{0}^{2}\cos^{2}\nu+2\beta_{0}\beta_{1}\cos\nu-2\beta_{0}\beta_{2}+3\beta_{1}^{2}\right),$$
$$\displaystyle\mathrm{h}^{(2)}_{0200}=-\frac{3}{4\beta_{0}^{4}}\left(4\beta_{0}^{4}\cos^{2}\nu-\beta_{0}^{2}\cos^{2}\nu-2\beta_{0}\beta_{1}\cos\nu+2\beta_{0}\beta_{2}-3\beta_{1}^{2}\right),$$
$$\displaystyle\mathrm{h}^{(3)}_{2000}=\frac{9}{4\beta_{0}^{5}}\left(\beta_{0}^{3}\cos^{3}\nu+2\beta_{0}^{2}\beta_{1}\cos^{2}\nu-2\beta_{0}^{2}\beta_{2}\cos\nu+2\beta_{0}^{2}\beta_{3}+3\beta_{0}\beta_{1}^{2}\cos\nu\beta_{0}\beta_{1}\beta_{2}+4\beta_{1}^{3}\right),$$
$$\displaystyle\mathrm{h}^{(3)}_{1100}=\frac{3\sqrt{3}}{2\beta_{0}^{5}\left(4\beta_{0}^{2}-1\right)^{7/2}}\sqrt{-4\beta_{0}^{6}+49\beta_{0}^{4}-24\beta_{0}^{2}+3}\left(2\beta_{0}^{2}\left(2\beta_{0}^{2}-1\right)\left(1-4\beta_{0}^{2}\right)^{2}\beta_{3}+4\left(16\beta_{0}^{6}-30\beta_{0}^{4}\right.\right.$$
$$\displaystyle\left.\left.+10\beta_{0}^{2}-1\right)\beta_{1}^{3}+\beta_{0}\cos\nu\left(\beta_{0}\left(1-4\beta_{0}^{2}\right)^{2}\cos\nu\left(2\left(2\beta_{0}^{2}-1\right)\beta_{1}+\beta_{0}\left(4\beta_{0}^{2}-1\right)\cos\nu\right)\right.\right.$$
$$\displaystyle\left.\left.{-}2\beta_{0}\left(2\beta_{0}^{2}{-}1\right)\left(1{-}4\beta_{0}^{2}\right)^{2}\beta_{2}{+}\left(64\beta_{0}^{6}{-}\beta_{0}^{4}{+}30\beta_{0}^{2}{-}3\right)\beta_{1}^{2}\right){+}2\beta_{0}\left({-}64\beta_{0}^{6}{+}88\beta_{0}^{4}{-}30\beta_{0}^{2}{+}3\right)\beta_{1}\beta_{2}\right),$$
$$\displaystyle\mathrm{h}^{(3)}_{0200}=-\frac{9}{4\beta_{0}^{5}}\left(\beta_{0}\cos\nu\left(\beta_{0}\cos\nu\left(\left(\beta_{0}-4\beta_{0}^{3}\right)\cos\nu+2\beta_{1}\right)-2\beta_{0}\beta_{2}+3\beta_{1}^{2}\right)+\beta_{0}^{2}\beta_{3}-6\beta_{0}\beta_{1}\beta_{2}+4\beta_{1}^{3}\right),$$
$$\displaystyle\mathrm{h}^{(4)}_{2000}=-\frac{9}{\beta_{0}^{6}}\left(\beta_{0}^{4}\cos^{4}\nu+2\beta_{0}^{3}\beta_{1}\cos^{3}\nu+2\beta_{0}\cos\nu\left(\beta_{0}^{2}\beta_{3}-3\beta_{0}\beta_{1}\beta_{2}+2\beta_{1}^{3}\right)-\beta_{0}^{2}\cos^{2}\nu\left(2\beta_{0}\beta_{2}-3\beta_{1}^{2}\right)\right.$$
$$\displaystyle\left.+6\beta_{0}^{2}\beta_{1}\beta_{3}+\beta_{0}^{2}\left(3\beta_{2}^{2}-2\beta_{0}\beta_{4}\right)-12\beta_{0}\beta_{1}^{2}\beta_{2}+5\beta_{1}^{4}\right),$$
$$\displaystyle\mathrm{h}^{(4)}_{1100}=-\frac{6\sqrt{3}}{\beta_{0}^{6}\left(4\beta_{0}^{2}-1\right)^{9/2}}\sqrt{-4\beta_{0}^{6}+49\beta_{0}^{4}-24\beta_{0}^{2}+3}\left(-\beta_{0}^{2}\left(1-4\beta_{0}^{2}\right)^{2}\cos^{2}\nu\left(\left(-16\beta_{0}^{4}+18\beta_{0}^{2}-3\right)\beta_{1}^{2}\right.\right.$$
$$\displaystyle\left.\left.+2\beta_{0}\left(8\beta_{0}^{4}-6\beta_{0}^{2}+1\right)\beta_{2}\right)+2\beta_{0}^{2}\left(1-4\beta_{0}^{2}\right)^{2}\left(16\beta_{0}^{4}-\beta_{0}^{2}+3\right)\beta_{1}\beta_{3}+\beta_{0}^{4}\left(1-4\beta_{0}^{2}\right)^{4}\cos^{4}\nu\right.$$
$$\displaystyle\left.+2\beta_{0}^{3}\left(2\beta_{0}^{2}-1\right)\left(4\beta_{0}^{2}-1\right)^{3}\beta_{1}\cos^{3}\nu+\beta_{0}\left(4\beta_{0}^{2}-1\right)\cos\nu\left(\beta_{0}^{2}\left(2\beta_{0}^{2}-1\right)\left(1-4\beta_{0}^{2}\right)^{2}\beta_{3}+\left(32\beta_{0}^{6}\right.\right.\right.$$
$$\displaystyle\left.\left.\left.-60\beta_{0}^{4}+20\beta_{0}^{2}-2\right)\beta_{1}^{3}+\beta_{0}\left(-64\beta_{0}^{6}+88\beta_{0}^{4}-30\beta_{0}^{2}+3\right)\beta_{1}\beta_{2}\right)+\left(\beta_{0}-4\beta_{0}^{3}\right)^{2}\left(\left(16\beta_{0}^{4}-\beta_{0}^{2}+3\right)\beta_{2}^{2}\right.\right.$$
$$\displaystyle\left.\left.-2\beta_{0}\left(8\beta_{0}^{4}-6\beta_{0}^{2}+1\right)\beta_{4}\right)+\left(256\beta_{0}^{8}-704\beta_{0}^{6}+350\beta_{0}^{4}-70\beta_{0}^{2}+5\right)\beta_{1}^{4}-12\beta_{0}\left(64\beta_{0}^{8}-136\beta_{0}^{6}\right.\right.$$
$$\displaystyle\left.\left.+70\beta_{0}^{4}-14\beta_{0}^{2}+1\right)\beta_{1}^{2}\beta_{2}\right),$$
$$\displaystyle\mathrm{h}^{(4)}_{0200}=-\frac{9}{\beta_{0}^{6}}\left(4\beta_{0}^{6}\cos^{4}\nu-\beta_{0}^{4}\cos^{4}\nu-2\beta_{0}^{3}\beta_{1}\cos^{3}\nu+2\beta_{0}^{3}\beta_{2}\cos^{2}\nu-\beta_{0}^{3}\beta_{3}\cos\nu+2\beta_{0}^{3}\beta_{4}\right.$$
$$\displaystyle\left.-3\beta_{0}^{2}\beta_{1}^{2}\cos^{2}\nu+6\beta_{0}^{2}\beta_{1}\beta_{2}\cos\nu-6\beta_{0}^{2}\beta_{1}\beta_{3}-3\beta_{0}^{2}\beta_{2}^{2}-\beta_{0}\beta_{1}^{3}\cos\nu+12\beta_{0}\beta_{1}^{2}\beta_{2}-5\beta_{1}^{4}\right).$$
$$\displaystyle h^{(1)}_{2000}=\frac{\sqrt{3}}{28\beta_{0}^{5}-11\beta_{0}^{3}+\beta_{0}}\left(2\left(6\beta_{0}^{4}-21\beta_{0}^{2}+5\right)\beta_{1}+\beta_{0}\left(4\beta_{0}^{4}+3\beta_{0}^{2}-1\right)\cos\nu\right),$$
$$\displaystyle h^{(1)}_{1100}=\frac{8\sqrt[4]{3}}{\beta_{0}\left(4\beta_{0}^{2}-1\right)\sqrt{7\beta_{0}^{2}-1}\sqrt{37\beta_{0}^{2}-9}}\left(2\left(5\beta_{0}^{4}-13\beta_{0}^{2}+3\right)\beta_{1}+\left(4\beta_{0}^{2}-1\right)\beta_{0}^{3}\cos\nu\right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rothen, Y., Valeriano, L.R. & Vidal, C. On the Parametric Stability of the Isosceles Triangular Libration Points in the Planar Elliptical Charged Restricted Three-body Problem. Regul. Chaot. Dyn. 27, 98–121 (2022). https://doi.org/10.1134/S1560354722010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722010099

Keywords

Navigation