Skip to main content
Log in

The Motion of an Unbalanced Circular Disk in the Field of a Point Source

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Describing the phenomena of the surrounding world is an interesting task that has long attracted the attention of scientists. However, even in seemingly simple phenomena, complex dynamics can be revealed. In particular, leaves on the surface of various bodies of water exhibit complex behavior. This paper addresses an idealized description of the mentioned phenomenon. Namely, the problem of the plane-parallel motion of an unbalanced circular disk moving in a stream of simple structure created by a point source (sink) is considered. Note that using point sources, it is possible to approximately simulate the work of skimmers used for cleaning swimming pools. Equations of coupled motion of the unbalanced circular disk and the point source are derived. It is shown that in the case of a fixed-position source of constant intensity the equations of motion of the disk are Hamiltonian. In addition, in the case of a balanced circular disk the equations of motion are integrable. A bifurcation analysis of the integrable case is carried out. Using a scattering map, it is shown that the equations of motion of the unbalanced disk are nonintegrable. The nonintegrability found here can explain the complex motion of leaves in surface streams of bodies of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Usually, when it comes to considering the plane-parallel motion of a rigid body in a fluid, it is called the motion of a smooth (in particular, circular) foil or a foil with a sharp edge. However, in this paper we use the term “circular disk” instead of “circular foil”.

References

  1. Artemova, E. M. and Vetchanin, E. V., Control of the Motion of a Circular Cylinder in an Ideal Fluid Using a Source, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020, vol. 30, no. 4, pp. 604–617.

    Article  MathSciNet  Google Scholar 

  2. Arnold, V. I., Ordinary Differential Equations, Berlin: Springer, 2006.

    Google Scholar 

  3. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., The Dynamics of Three Vortex Sources, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 694–701.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., The Dynamics of Vortex Sources in a Deformation Flow, Regul. Chaotic Dyn., 2016, vol. 21, no. 3, pp. 367–376.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bizyaev, I. A. and Mamaev, I. S., Dynamics of a Pair of Point Vortices and a Foil with Parametric Excitation in an Ideal Fluid, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020, vol. 30, no. 4, pp. 618–627 (Russian).

    Article  MathSciNet  Google Scholar 

  6. Blackmore, D. and Knio, O., Transition from Quasiperiodicity to Chaos for Three Coaxial Vortex Rings, Z. Angew. Math. Mech., 2000, vol. 80, no. S1, pp. 173–176.

    Article  MATH  Google Scholar 

  7. Blackmore, D. and Knio, O., KAM Theory Analysis of the Dynamics of Three Coaxial Vortex Rings, Phys. D, 2000, vol. 140, no. 3–4, pp. 321 – 348.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71-132.

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, A. V. and Kilin, A. A., Stability of Thomson’s Configurations of Vortices on a Sphere, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 33–62.

    Article  MathSciNet  MATH  Google Scholar 

  11. Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Transition to Chaos in Dynamics of Four Point Vortices on a Plane, Dokl. Phys., 2006, vol. 51, no. 5, pp. 262–267; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 1, pp. 49-54.

    Article  MATH  Google Scholar 

  12. Borisov, A. V., Kilin, A. A., Mamaev, I. S., and Tenenev, V. A., The Dynamics of Vortex Rings: Leapfrogging in an Ideal and Viscous Fluid, Fluid Dyn. Res., 2014, vol. 46, no. 3, 031415, 16 pp.

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  14. Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability, Regul. Chaotic Dyn., 2018, vol. 23, no. 5, pp. 613–636.

    Article  MathSciNet  MATH  Google Scholar 

  16. Eckhardt, B., Irregular Scattering of Vortex Pairs, Europhys. Lett., 1988, vol. 5, no. 2, pp. 107–111.

    Article  Google Scholar 

  17. Eckhardt, B. and Aref, H., Integrable and Chaotic Motions of Four Vortices: 2. Collision Dynamics of Vortex Pairs, Philos. Trans. Roy. Soc. London Ser. A, 1988, vol. 326, no. 1593, pp. 655–696.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fedonyuk, V. and Tallapragada, P., The Dynamics of a Chaplygin Sleigh with an Elastic Internal Rotor, Regul. Chaotic Dyn., 2019, vol. 24, no. 1, pp. 114–126.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fridman, A. A. and Polubarinova, P. Ya., On Moving Singularities of a Flat Motion of an Incompressible Fluid, Geofiz. Sb., 1928, vol. 5, no. 2, pp. 9–23 (Russian).

    Google Scholar 

  20. Jung, C., Poincaré Map for Scattering States, J. Phys. A, 1986, vol. 19, no. 8, pp. 1345–1353.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Wanner, G., and Lubich, Ch., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, New York: Springer, 2006.

    MATH  Google Scholar 

  22. Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.

    MathSciNet  Google Scholar 

  23. Kirchhoff, G., Vorlesungen über mathematische Physik, Leipzig: Teubner, 1876.

    MATH  Google Scholar 

  24. Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, New York: Wiley, 1964.

    MATH  Google Scholar 

  25. Korotkin, A. I., Added Mass of Ship Structures, Fluid Mech. Appl., vol. 88, New York: Springer, 2009.

    Google Scholar 

  26. Koukouloyannis, V., Voyatzis, G., and Kevrekidis, P. G., Dynamics of Three Noncorotating Vortices in Bose – Einstein Condensates, Phys. Rev. E, 2014, vol. 89, no. 4, 042905, 14 pp.

    Article  Google Scholar 

  27. Kurakin, L. G., Stability, Resonances, and Instability of the Regular Vortex Polygons in the Circular Domain, Dokl. Phys., 2004, vol. 49, no. 11, pp. 658–661; see also: Dokl. Akad. Nauk, 2004, vol. 399, no. 1, pp. 52-55.

    Article  Google Scholar 

  28. Kurakin, L. G. and Yudovich, V. I., The Stability of Stationary Rotation of a Regular Vortex Polygon, Chaos, 2002, vol. 12, no. 3, pp. 574–595.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuznetsov, S. P., Dynamical Chaos, Moscow: Fizmatlit, 2006.

    Google Scholar 

  30. Llewellyn Smith, S. G., How Do Singularities Move in Potential Flow?, Phys. D, 2011, vol. 240, no. 20, pp. 1644–1651.

    Article  MathSciNet  MATH  Google Scholar 

  31. Mamaev, I. S. and Bizyaev, I. A., Dynamics of an Unbalanced Circular Foil and Point Vortices in an Ideal Fluid, Phys. Fluids, 2021, vol. 33, no. 8, 087119, 18 pp.

    Article  Google Scholar 

  32. Mason, R. J., Fluid Locomotion and Trajectory Planning for Shape-Changing Robots, PhD Dissertation, Pasadena,Calif.: California Institute of Technology, 2003, 264 pp.

  33. Michelin, S. and Llewellyn Smith, S. G., An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems, Theor. Comput. Fluid Dyn., 2009, vol. 23, no. 2, pp. 127–153.

    Article  MATH  Google Scholar 

  34. Milne-Thomson, L. M., Theoretical Hydrodynamics, New York: Macmillan, 1968.

    Book  MATH  Google Scholar 

  35. Morgulis, A. B., Hydrodynamic Characterization of the Ball, Math. Notes, 2014, vol. 96, no. 5–6, pp. 739–744; see also: Mat. Zametki, 2014, vol. 96, no. 5, pp. 732-737.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramodanov, S. M., Motion of a Circular Cylinder and a Vortex in an Ideal Fluid, Regul. Chaotic Dyn., 2001, vol. 6, no. 1, pp. 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ramodanov, S. M., Motion of a Circular Cylinder and \(N\) Point Vortices in a Perfect Fluid, Regul. Chaotic Dyn., 2002, vol. 7, no. 3, pp. 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ryabov, P. E. and Sokolov, S. V., Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 1, pp. 59–66.

    MathSciNet  MATH  Google Scholar 

  39. Sedov, L. I., Two-Dimensional Problems in Hydrodynamics and Aerodynamics, New York: Wiley, 1965.

    Book  MATH  Google Scholar 

  40. Shashikanth, B. N., Marsden, J. E., Burdick, J. W., and Kelly, S. D., The Hamiltonian Structure of a \(2\)D Rigid Circular Cylinder Interacting Dynamically with \(N\) Point Vortices, Phys. Fluids, 2002, vol. 14, pp. 1214–1227.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sokolovskiy, M. A., Carton, X. J., and Filyushkin, B. N., Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model: Part 1. Point-Vortex Approach, Mathematics, 2020, vol. 8, no. 8, 1228, 13 pp.

    Article  Google Scholar 

  42. Sokolovskiy, M. A., Koshel, K. V., Dritschel, D. G., and Reinaud, J. N., \(N\)-Symmetric Interaction of \(N\) Hetons: Part 1. Analysis of the Case \(N=2\), Phys. Fluids, 2020, vol. 32, no. 9, 096601, 17 pp.

    Article  Google Scholar 

  43. Torres, P. J., Kevrekidis, P. G., Frantzeskakis, D. J., Carretero-González, R., Schmelcher, P., and Hall, D. S., Dynamics of Vortex Dipoles in Confined Bose – Einstein Condensates, Phys. Lett. A, 2011, vol. 375, no. 33, pp. 3044–3050.

    Article  Google Scholar 

  44. Vetchanin, E. V. and Kazakov, A. O., Bifurcations and Chaos in the Dynamics of Two Point Vortices in an Acoustic Wave, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2016, vol. 26, no. 4, 1650063, 13 pp.

    Article  MathSciNet  MATH  Google Scholar 

  45. Vetchanin, E. V. and Mamaev, I. S., Dynamics of Two Point Vortices in an External Compressible Shear Flow, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 893–908.

    Article  MathSciNet  MATH  Google Scholar 

  46. Ziglin, S. L., Nonintegrability of a Problem on the Motion of Four Point Vortices, Sov. Math. Dokl., 1980, vol. 21, no. 1, pp. 296–299; see also: Dokl. Akad. Nauk SSSR, 1980, vol. 250, no. 6, pp. 1296-1300.

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors extend their gratitude to Prof. Oliver O’Reilly for useful comments. The authors are grateful to I. A. Bizyaev, I. S. Mamaev and A. A. Kilin for useful discussions.

Funding

The work of Elizaveta M. Artemova (Sections 2 and 4) was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (FEWS-2020-0009), and was supported in part by the Moebius Contest Foundation for Young Scientists. The work of Evgeny V. Vetchanin (Sections 1 and 3) is supported by the RFBR under grant 18-29-10050-mk.

Author information

Authors and Affiliations

Authors

Contributions

Elizaveta M. Artemova has derived equations of motions and investigated their nonintegrability. Evgeny V. Vetchanin has made literature review and investigated intagrable case of the equations of motion. All authors participated in discussing the results.

Corresponding authors

Correspondence to Elizaveta M. Artemova or Evgeny V. Vetchanin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

76Bxx,70Exx,37Jxx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemova, E.M., Vetchanin, E.V. The Motion of an Unbalanced Circular Disk in the Field of a Point Source. Regul. Chaot. Dyn. 27, 24–42 (2022). https://doi.org/10.1134/S1560354722010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722010051

Keywords

Navigation