Skip to main content
Log in

Three-dimensional Quasi-geostrophic Staggered Vortex Arrays

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We determine and characterise relative equilibria for arrays of point vortices in a three-dimensional quasi-geostrophic flow. The vortices are equally spaced along two horizontal rings whose centre lies on the same vertical axis. An additional vortex may be placed along this vertical axis. Depending on the parameters defining the array, the vortices on the two rings are of equal or opposite sign. We address the linear stability of the point vortex arrays. We find both stable equilibria and unstable equilibria, depending on the geometry of the array. For unstable arrays, the instability may lead to the quasi-regular or to the chaotic motion of the point vortices. The linear stability of the vortex arrays depends on the number of vortices in the array, on the radius ratio between the two rings, on the vertical offset between the rings and on the vertical offset between the rings and the central vortex, when the latter is present. In this case the linear stability also depends on the strength of the central vortex. The non-linear evolution of a selection of unstable cases is presented exhibiting examples of quasi-regular motion and of chaotic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. von Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.

    MathSciNet  Google Scholar 

  2. Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.

    MATH  Google Scholar 

  3. Thomson, W., Vortex Statics, Proc. Roy. Soc. Edinburgh, 1878, vol. 9, pp. 59–73.

    Article  MATH  Google Scholar 

  4. Thomson, W., Floating Magnets, Nature, 1878, vol. 18, pp. 13–14.

    Article  Google Scholar 

  5. Mayer, A. M., On the Morphological Laws of the Configurations Formed by Magnets Floating Vertically and Subjected to the Attraction of a Superposed Magnet; with Notes on Some of the Phenomena in Molecular Structure Which These Experiments May Serve to Explain and Illustrate, Am. J. Sci. Arts, Ser. 3, 1878, vol. 16, no. 94, pp. 247–256.

    Google Scholar 

  6. Thomson, J. J., Treatise on the Motion of Vortex Rings, London: Macmillan, 1883, pp. 94–108.

    MATH  Google Scholar 

  7. Havelock, T. H., The Stability of Motion of Rectilinear Vortices in Ring Formation, Philos. Mag., 1931, vol. 11, no. 70, pp. 617–633.

    Article  MATH  Google Scholar 

  8. Morton, W. V., Vortex Polygons, Proc. R. Irish Acad., Sect. A, 1935, vol. 42, pp. 21–29.

    MATH  Google Scholar 

  9. Khazin, L. G., Regular Polygons of Point Vortices and Resonance Instability of Steady States, Sov. Phys. Dokl., 1976, vol. 21, pp. 567–570; see also: Dokl. Akad. Nauk SSSR, 1976, vol. 230, no. 4, pp. 799-802.

    Google Scholar 

  10. Mertz, G. T., Stability of Body-Centered Polygonal Configurations of Ideal Vortices, Phys. Fluids, 1978, vol. 21, no. 7, pp. 1092–1095.

    Article  MATH  Google Scholar 

  11. Stewart, H. J., Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems, Quart. Appl. Math., 1943, vol. 1, pp. 262–267.

    Article  MathSciNet  MATH  Google Scholar 

  12. Stewart, H. J., Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere, Bull. Amer. Math. Soc., 1945, vol. 51, pp. 781–799.

    Article  MathSciNet  MATH  Google Scholar 

  13. Morikawa, G. K. and Swenson, E. V., Interacting Motion of Rectilinear Geostrophic Vortices, Phys. Fluids, 1971, vol. 14, no. 6, pp. 1058–1073.

    Article  Google Scholar 

  14. Aref, H., Stability of Reactive Equilibria of Three Vortices, Phys. Fluids, 2009, vol. 21, no. 9, 094101, 22 pp.

    Article  MATH  Google Scholar 

  15. Kizner, Z., Stability of Point-Vortex Multipoles Revisited, Phys. Fluids, 2001, vol. 23, no. 6, 064104, 11 pp.

    Article  MATH  Google Scholar 

  16. Kizner, Z., On the Stability of Two-Layer Geostrophic Point-Vortex Multipoles, Phys. Fluids, 2014, vol. 26, no. 4, 046602, 18 pp.

    Article  MATH  Google Scholar 

  17. Kurakin, L. G. and Yudovich, V. I., The Stability of Stationary Rotation of a Regular Vortex Polygon, Chaos, 2002, vol. 12, no. 3, pp. 574–595.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurakin, L. G. and Ostrovskaya, I. V., On Stability of the Thomson’s Vortex \(N\)-Gon in the Geostrophic Model of the Point Bessel Vortices, Regul. Chaotic Dyn., 2017, vol. 22, no. 7, pp. 865–879.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-Layer/Homogeneous Rotating Fluid, Regul. Chaotic Dyn., 2016, vol. 21, no. 3, pp. 291–334.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurakin, L. G., Melekhov, A. P., and Ostrovskaya, I. V., A Survey of the Stability Criteria of Thomson's Vortex Polygons outside a Circular Domain, Bol. Soc. Mat. Mex., 2016, vol. 22, no. 2, pp. 733–744.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., Stability of Discrete Vortex Multipoles in Homogeneous and Two-Layer Rotating Fluid, Dokl. Phys., 2015, vol. 60, no. 5, pp. 217–223; see also: Dokl. Akad. Nauk, 2015, vol. 462, no. 2, pp. 161-167.

    Article  Google Scholar 

  22. Kurakin, L. G., Influence of Annular Boundaries on Thomson’s Vortex Polygon Stability, Chaos, 2014, vol. 14, no. 2, 023105, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurakin, L. G., The Stability of the Steady Rotation of a System of Three Equidistant Vortices outside a Circle, J. Appl. Math. Mech., 2011, vol. 75, no. 2, pp. 227–234; see also: Prikl. Mat. Mekh., 2011, vol. 75, no. 2, pp. 327-337.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurakin, L. G. and Ostrovskaya, I. V., Stability of the Thomson Vortex Polygon with Evenly Many Vortices outside a Circular Domain, Siberian Math. J., 2010, vol. 51, no. 3, pp. 463–474; see also: Sibirsk. Mat. Zh., 2010, vol. 51, no. 3, pp. 584-598.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurakin, L. G. and Ostrovskaya, I. V., Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 385–396.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kurakin, L. G., On the Stability of Thomson’s Vortex Configurations inside a Circular Domain, Regul. Chaotic Dyn., 2010, vol. 15, no. 1, pp. 40–58.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurakin, L. G., On Stability of a Regular Vortex Polygon in the Circular Domain, J. Math. Fluid Mech., 2005, vol. 7, suppl. 3, pp. S376–S386.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurakin, L. G., On Nonlinear Stability of the Regular Vortex Systems on a Sphere, Chaos, 2004, vol. 14, no. 3, pp. 592–602.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurakin, L. G., Stability, Resonances, and Instability of the Regular Vortex Polygons in the Circular Domain, Dokl. Phys., 2004, vol. 49, no. 11, pp. 658–661; see also: Dokl. Akad. Nauk, 2004, vol. 399, no. 1, pp. 52-55.

    Article  Google Scholar 

  30. Kizner, Z., Khvoles, R., and McWilliams, J. C., Rotating Multipoles on the \(f\)- and \(\gamma\)-planes, Phys. Fluids, 2007, vol. 19, no. 1,016603, pp. 13).

    Article  MATH  Google Scholar 

  31. Dritschel, D. G., The Stability and Energetics of Corotating Uniform Vortices, J. Fluid Mech., 1985, vol. 157, pp. 95–134.

    Article  MATH  Google Scholar 

  32. Crowdy, D. G., Exact Solutions for Rotating Vortex Arrays with Finite-Area Cores, J. Fluid Mech., 2002, vol. 469, pp. 209–235.

    Article  MathSciNet  MATH  Google Scholar 

  33. Xue, B. B., Johnson, E. R., and McDonald, N. R., New Families of Vortex Patch Equilibria for the Two-Dimensional Euler Equations, Phys. Fluids, 2017, vol. 29, no. 12, 123602, 18 pp.

    Article  Google Scholar 

  34. Sokolovskiy, M. A., Koshel, K. V., Dritschel, D. G., and Reinaud, J. N., \(N\)-Symmetric Interaction of \(N\) Hetons: Part 1. Analysis of the Case \(N=2\), Phys. Fluids, 2020, vol. 32, no. 9, 096601, 17 pp.

    Article  Google Scholar 

  35. Reinaud, J. N., Three-Dimensional Quasi-Geostrophic Vortex Equilibria with \(m\)-Fold Symmetry, J. Fluid Mech., 2019, vol. 863, pp. 32–59.

    Article  MathSciNet  MATH  Google Scholar 

  36. Reinaud, J. N. and Dritschel, D. G., The Stability and Nonlinear Evolution of Quasi-Geostrophic Toroidal Vortices, J. Fluid Mech., 2019, vol. 863, pp. 60–78.

    Article  MathSciNet  MATH  Google Scholar 

  37. Dritschel, D. G., Ring Configurations of Point Vortices in Polar Atmospheres, Regul. Chaotic Dyn., 2021, vol. 26, no. 4, pp. 467–481.

    Article  Google Scholar 

  38. Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd ed., Cambridge: Cambridge Univ. Press, 2017.

    Book  MATH  Google Scholar 

  39. Dritschel, D. G. and Boatto, S., The Motion of Point Vortices on Closed Surfaces, Proc. A, 2015, vol. 471, no. 2176, 20140890, 25 pp.

    MathSciNet  MATH  Google Scholar 

  40. Reinaud, J. N. and Carton, X., Existence, Stability and Formation of Baroclinic Tripoles in Quasi-Geostrophic Flows, J. Fluid Mech., 2015, vol. 785, pp. 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  41. Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., Rogers, J., Eichstdt, G., Momary, T., Ingersoll, A. P., Filacchione, G., Sindoni, G., Tabataba-Vakili, F., Dinelli, B. M., Fabiano, F., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Lunine, J. I., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cicchetti, A., Plainaki, C., Olivieri, A., O’Neill, M. E., Turrini, D., Stefani, S., Sordini, R., and Amoroso, M., Cluster of Cyclones Encircling Jupiter’s Poles, Nature, 2018, vol. 555, no. 7695, pp. 216–219.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author wishes to thank David Dritschel for helpful discussions during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean N. Reinaud.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

76B47,76E20

APPENDIX. INVARIANTS AND ACCURACY

We briefly discuss the accuracy of the calculations. To this end, we verify that the flow invariants are conserved within acceptable limits for the practical relevance of the discussion. Similarly to the classical planar, two-dimensional vortex dynamics, the QG vortex dynamics conserves some fundamental invariants, namely, the linear impulse \(\boldsymbol{I}\), defined for a set of discrete point vortices as

$$\boldsymbol{I}=(I_{x},I_{y})=\sum_{i=1}^{N}\kappa_{i}(x_{i},y_{i}),$$
(A.1)
the angular impulse
$$J=\frac{1}{2}\sum_{i=1}^{N}\kappa_{i}(x_{i}^{2}+y_{i}^{2}),$$
(A.2)
and the interaction energy (which is also the Hamiltonian of the system)
$${H}=\sum_{i=1}^{N}\sum_{j=i+1}^{N}\frac{\kappa_{i}\kappa_{j}}{|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}|}$$
(A.3)

Figure 28 shows the evolution of the linear impulses \(I_{x},I_{y}\) and of the scaled angular impulse \(J/J_{0}\) and interaction energy \(H/H_{0}\) for the case presented in Fig. 21 with \(n=2\), \(\Delta=0\), \(r_{i}/r_{e}=0.2\) and no central vortex (top panels) and for \(n=9\), \(\Delta=0\), \(r_{i}/r_{e}=0.8\), and a central vortex \((\kappa_{0},z_{0})=(1,0)\) presented in Fig. 26. Here \(J_{0}\) and \(H_{0}\) are the initial values of the angular impulse and the interaction energy, respectively. Results show that the linear impulse (initially zero by symmetry) is conserved within machine precision. Angular impulse \(J\) is conserved within \(0.012\%\) for the case with \(n=2\), while the energy is conserved with \(0.2\%\) for a time step \(\Delta t=0.075\) which is enough for the purpose of the discussion. In particular, for the initial evolution \(t<50\) (which includes the first phases of the non-trivial unstable evolution), accuracy is much higher. For \(n=9\) accuracy is higher as the time step used is smaller \(\Delta t=0.0025\) (the vortex velocities are larger in this case). Small errors are associated with the finite accuracy of the time integration, especially when some vortices get close together and their velocity increases. For long integration periods, these errors could be mitigated by using an adaptive time step. We are, however, only interested in the early evolution of the arrays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinaud, J.N. Three-dimensional Quasi-geostrophic Staggered Vortex Arrays. Regul. Chaot. Dyn. 26, 505–525 (2021). https://doi.org/10.1134/S156035472105004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472105004X

Keywords

Navigation