Skip to main content
Log in

Topological analysis of an integrable system related to the rolling of a ball on a sphere

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A new integrable system describing the rolling of a rigid body with a spherical cavity on a spherical base is considered. Previously the authors found the separation of variables for this system on the zero level set of a linear (in angular velocity) first integral, whereas in the general case it is not possible to separate the variables. In this paper we show that the foliation into invariant tori in this problem is equivalent to the corresponding foliation in the Clebsch integrable system in rigid body dynamics (for which no real separation of variables has been found either). In particular, a fixed point of focus type is possible for this system, which can serve as a topological obstacle to the real separation of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 443–464.

    Article  MathSciNet  Google Scholar 

  2. Borisov, A. V., Fedorov, Yu. N., and Mamaev, I. S., Chaplygin Ball over a Fixed Sphere: An Explicit Integration, Regul. Chaotic Dyn., 2008, vol. 13, no. 6, pp. 557–571.

    Article  MathSciNet  MATH  Google Scholar 

  3. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Rolling of a Homogeneous Ball over a Dynamically Asymmetric Sphere, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 465–483.

    Article  MathSciNet  Google Scholar 

  4. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Generalized Chaplygin’s Transformation and Explicit Integration of a System with a Spherical Support, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 170–190.

    Article  MathSciNet  MATH  Google Scholar 

  5. Duistermaat, J. J., Chaplygin’s Sphere, arXiv:math/0409019v1 [math.DS] 1 Sep 2004.

    Google Scholar 

  6. Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].

    Article  MathSciNet  Google Scholar 

  8. Bolsinov, A.V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology and Classification, Boca Raton, FL: CRC Press, 2004.

    Google Scholar 

  9. Borisov, A. V., Mamaev, I. S., and Marikhin, V.G., Explicit Integration of one Problem in Nonholonomic Mechanics, Dokl. Akad. Nauk, 2008, vol. 422, no. 4, pp. 475–478 [Dokl. Phys., 2008, vol. 53, no. 10, pp. 525–528].

    MathSciNet  Google Scholar 

  10. Borisov, A. V. and Fedorov, Yu. N., On Two Modified Integrable Problems of Dynamics, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6, pp. 102–105 (Russian); see also: http://ics.org.ru/doc?pdf=384&dir=e (English transl.).

    Google Scholar 

  11. Borisov, A.V. and Tsygvintsev, A.V., Kowalewski Exponents and Integrable Systems of Classic Dynamics: 1, 2, Regul. Chaotic Dyn., 1996, vol. 1, no. 1, pp. 15–37 (Russian).

    MathSciNet  Google Scholar 

  12. The Clebsch System: Separation of Variables and Explicit Integration?: Collected Papers, A. V. Borisov, A.V. Tsiganov (Eds.), Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2009, pp. 7–20 (Russian).

  13. Fundamental and Applied Problems in the Theory of Vortices, A. V. Borisov, I. S. Mamaev, M. A. Sokolovskiy (Eds.), Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2003 (Russian).

    Google Scholar 

  14. Kharlamov, M.P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningrad: Leningr. Gos. Univ., 1988.

    Google Scholar 

  15. Tsyganov, A.V., One Invariant Measure and Different Poisson Brackets for Two Non-Holonomic Systems, Regul. Chaotic Dyn., 2012, vol. 17, no. 1, pp. 72–96.

    Article  MathSciNet  Google Scholar 

  16. Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Math. Sb., 1903, vol. 24, no. 1, pp. 139–168 [Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148].

    Google Scholar 

  17. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Bifurcation Analysis and the Conley Index in Mechanics, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 451–478.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Borisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.V., Mamaev, I.S. Topological analysis of an integrable system related to the rolling of a ball on a sphere. Regul. Chaot. Dyn. 18, 356–371 (2013). https://doi.org/10.1134/S1560354713040035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354713040035

MSC2010 numbers

Keywords

Navigation