Skip to main content
Log in

Integrable Systems on the Tangent Bundle of a Multi-Dimensional Sphere

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper contains a systematic exposition of some results on the equations of motion of a dynamically symmetric n-dimensional rigid body in a nonconservative field of forces. Similar bodies are considered in the dynamics of actual rigid bodies interacting with a resisting medium under the conditions of jet flow past the body with a nonconservative following force acting on the body in such a way that its characteristic point has a constant velocity, which means that the system has a nonintegrable servo-constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR, 14, No. 5, 247–250 (1937).

    Google Scholar 

  2. V. I. Arnold, Mathematical Methods in Classical Mechanics [in Russian], Nauka, Moscow (1989).

  3. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics [in Russian], VINITI, Moscow (1985).

    MATH  Google Scholar 

  4. O. I. Bogoyavlenskii, “Some integrable cases of the Euler equations,” Dokl. Akad. Nauk SSSR, 287, No. 5, 1105–1108 (1986).

    MathSciNet  Google Scholar 

  5. A. D. Bryuno, The Local Method of Nonlinear Analysis of Differential Equations [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  6. N. Bourbaki, Integration [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

  7. D. V. Georgievskii and M. V. Shamolin, “Kinematics and mass geometry of a rigid body with a fixed point in R n,” Dokl. Ross. Akad. Nauk, 380, No. 1, 47–50 (2001).

    Google Scholar 

  8. D. V. Georgievskii and M. V. Shamolin, “Generalized dynamical Euler equations of a rigid body with a fixed point in R n,” Dokl. Ross. Akad. Nauk, 383, No. 5, 635–637 (2002).

    Google Scholar 

  9. D. V. Georgievskii and M. V. Shamolin, “First integrals of equations of motion of a generalized gyroscope in R n,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 37–41 (2003).

    Google Scholar 

  10. V. V. Golubev, Lectures on the Analytical Theory of Differential Equations [in Russian], Gostekhizdat, Moscow (1950).

    Google Scholar 

  11. B. A. Dubrovin, B. A. Krichever, and S. P. Novikov, “Integrable Systems. I,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat., 4, 179–284 (1985).

    MATH  Google Scholar 

  12. V. V. Kozlov, Methods of Qualitative Analysis in Solid Dynamics [in Russian], Izd. Mosk. Univ., Moscow (1980).

    Google Scholar 

  13. V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics,” Usp. Mat. Nauk, 38, No. 1, 3–67 (1983).

    MathSciNet  Google Scholar 

  14. Yu. I. Manin, “Algebraic aspects of differential equations,” J. Sov. Math., 11, 1–128 (1979).

    Article  MATH  Google Scholar 

  15. Z. Nitecky, Introduction to Differential Dynamics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  16. V. A. Pliss, Integral Sets of Periodic Systems of Differential Equations [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  17. A. Poincaré, On Curves Defined by Differential Equations, OGIZ, Moscow (1947).

    Google Scholar 

  18. A. Poincaré, “New methods in celestial mechanics,” in: Selected Works, Vols. 1, 2, Nauka, Moscow (1971, 1972).

  19. V. A. Samsonov and M. V. Shamolin, “On the problem of motion of a body in resistant media,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 51–54 (1989).

  20. S. Smale, “Differentiable dynamical systems,” Usp. Mat. Nauk, 25, No. 1, 113–185 (1970).

    MathSciNet  MATH  Google Scholar 

  21. V. A. Steklov, On the Motion of a Solid Body in Fluid [in Russian], Kharkiv (1893).

  22. V. V. Trofimov and A. T. Fomenko, “Dynamical systems on linear representation orbits and complete integrability of some hydrodynamic systems,” Funkt. Anal. Pril., 17, No. 1, 31–39 (1983).

    Google Scholar 

  23. V. V. Trofimov and M. V. Shamolin, “Dissipative systems with nontrivial generalized Arnold–Maslov classes,” in: “Abstracts of lectures at the P. K. Rashevskii seminar on vector and tensor analysis,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 62 (2000).

  24. Ph. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).

  25. S. A. Chaplygin, Selected Works [in Russian], Nauka, Moscow, 1976.

  26. M. V. Shamolin, “Closed trajectories of different topological type in the problem of motion of a body in a resistant medium,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 52–56 (1992).

  27. M. V. Shamolin, “A problem of motion of a body in a resistant medium,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 52–58 (1992).

  28. M. V. Shamolin, “Classification of phase portraits in the problem of motion of a body in a resistant medium with linear damping moment,” Prikl. Mat. Mekh., 57, No. 4, 40–49 (1993).

    MathSciNet  Google Scholar 

  29. M. V. Shamolin, “An integrable case in spatial dynamics of rigid bodies interacting with media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 65–68 (1997).

  30. M. V. Shamolin, “Spatial topographic Poincaré systems and comparison systems,” Usp. Mat. Nauk, 52, No. 3, 177–178 (1997).

    Article  Google Scholar 

  31. M. V. Shamolin, “On integrability in terms of transcendental functions,” Usp. Mat. Nauk, 53, No. 3, 209–210 (1998).

    Article  MathSciNet  Google Scholar 

  32. M. V. Shamolin, “A family of portraits with limit cycles in the dynamics of rigid bodies interacting with media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 29–37 (1998).

  33. M. V. Shamolin, “Some classes of particular solutions in the dynamics of rigid bodies interacting with media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 178–189 (1999).

  34. M. V. Shamolin, “New Jacobi integrable cases in the dynamics of a rigid body interacting with media,” Dokl. Ross. Akad. Nauk, 364, No. 5, 627–629 (1999).

    MathSciNet  Google Scholar 

  35. M. V. Shamolin, “On roughness of dissipative systems and relative roughness and nonroughness of systems with variable dissipation,” Usp. Mat. Nauk, 54, No. 5, 181–182 (1999).

    Article  MathSciNet  Google Scholar 

  36. M. V. Shamolin, “On limit sets of differential equations near singular points,” Usp. Mat. Nauk, 55, No. 3, 187–188 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. V. Shamolin, “Jacobi integrability in the problem of a four-dimensional rigid body in a resistant medium,” Dokl. Ross. Akad. Nauk, 375, No. 3, 343–346 (2000).

    MathSciNet  Google Scholar 

  38. M. V. Shamolin, “Complete integrability of the equations of motion of a spatial pendulum in an incoming flow,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 22–28 (2001).

  39. M. V. Shamolin, “On the integrability of some classes of nonconservative systems,” Usp. Mat. Nauk, 57, No. 1, 169–170 (2002).

    Article  MathSciNet  Google Scholar 

  40. M. V. Shamolin, “A completely integrable case in spatial dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 403, No. 4, 482–485 (2005).

    MathSciNet  Google Scholar 

  41. M. V. Shamolin, “Comparison of Jacobi integrable cases in plane and spatial dynamics of jet flow past a body,” Prikl. Mat. Mekh., 69, No. 6, 1003–1010 (2005).

    MathSciNet  MATH  Google Scholar 

  42. M. V. Shamolin, “An integrable case of dynamical equations on so(4) × R n,” Usp. Mat. Nauk, 60, No. 6, 233–234 (2005).

    Article  MathSciNet  Google Scholar 

  43. M. V. Shamolin, “Complete integrability of the equations of motion of a spatial pendulum in a medium flow with rotational derivatives of the torque produced by the medium taken into account,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 187–192 (2007).

  44. M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of the two-dimensional sphere,” Usp. Mat. Nauk, 62, No. 5, 169–170 (2007).

    Article  MathSciNet  Google Scholar 

  45. M. V. Shamolin, Methods of Analysis of Dynamical Systems with Variable Dissipation in the Dynamics of Solids [in Russian], Examen, Moscow (2007).

  46. M. V. Shamolin, “Dynamical systems with variable dissipation: approaches, methods, applications,” Fundam. Prikl. Mat., 14, No. 3, 3–237 (2008).

    MathSciNet  Google Scholar 

  47. M. V. Shamolin, “Novel integrable cases in the dynamics of a body interacting with a medium taking into account dependence of the moment of the resistance force on the angular velocity,” Prikl. Mat. Mekh., 72, No. 2, 273–287 (2008).

    MathSciNet  MATH  Google Scholar 

  48. M. V. Shamolin, “Integrability of some classes of dynamical systems in terms of elementary functions,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 43–49 (2008).

  49. M. V. Shamolin, “A three-parameter family of phase portraits in the dynamics of rigid bodies interacting with media,” Dokl. Ross. Akad. Nauk, 418, No. 1, 46–51 (2008).

    Google Scholar 

  50. M. V. Shamolin, “Classification of complete integrability cases in the dynamics of a four-dimensional rigid body in nonconservative field,” Sovr. Mat. Prilozh., 65, 132–142 (2009).

    Google Scholar 

  51. M. V. Shamolin, “New cases of complete integrability in the dynamics of a 4-dimensional dynamically symmetric rigid body in nonconservative field of forces,” Dokl. Ross. Akad. Nauk, 425, No. 3, 338–342 (2009).

    Google Scholar 

  52. M. V. Shamolin, “Integrability of some classes of nonconservative dynamical systems in terms of elementary functions,” Sovr. Mat. Pril., 62, 131–171 (2009).

    Google Scholar 

  53. M. V. Shamolin, “New integrable cases in spatial dynamics of rigid bodies,” Dokl. Ross. Akad. Nauk, 431, No. 3, 339–343 (2010).

    Google Scholar 

  54. M. V. Shamolin, “A case of complete integrability in the dynamics of a 4-dimensional rigid body in a nonconservative field,” Usp. Mat. Nauk, 65, No. 1, 189–190 (2010).

    Article  MathSciNet  Google Scholar 

  55. M. V. Shamolin, “New integrable cases in the dynamics of a 4-dimensional rigid body in a nonconservative field,” Dokl. Ross. Akad. Nauk, 437, No. 2, 190–193 (2011).

    Google Scholar 

  56. M. V. Shamolin, “A new case of complete integrability of dynamical equations on the tangent bundle of a three-dimensional sphere,” Vestn. Samarsk. Univ. Estestv. Ser., No. 5 (86), 187–189 (2011).

    Google Scholar 

  57. M. V. Shamolin, “A complete list of first integrals in the problem of motion of a 4-dimensional rigid body in nonconservative field with linear damping,” Dokl. Ross. Akad. Nauk, 440, No. 2, 187–190 (2011).

    Google Scholar 

  58. M. V. Shamolin, “Some questions of the qualitative theory in the dynamics of systems with variable dissipation,” Sovr. Mat. Pril., 78, 138–147 (2012).

    Google Scholar 

  59. M. V. Shamolin, “A new integrable case in the dynamics of a 4-dimensional rigid body in nonconservative field with linear damping,” Dokl. Ross. Akad. Nauk, 444, No. 5, 506–509 (2012).

    Google Scholar 

  60. M. V. Shamolin, “A new integrable case in spatial dynamics of a rigid body interacting with media with linear damping,” Dokl. Ross. Akad. Nauk, 442, No. 4, 479–481 (2012).

    Google Scholar 

  61. M. V. Shamolin, “A complete list of first integrals for the dynamical equations of motion of a rigid body in resistant media, with linear damping taken into account,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 44–47 (2012).

    Google Scholar 

  62. M. V. Shamolin, “A comparison of complete integrability cases in the dynamics of 2- and 4-dimensional rigid bodies in nonconservative field,” Sovr. Mat. Pril., 76, 84–99 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shamolin.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 257–323, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamolin, M.V. Integrable Systems on the Tangent Bundle of a Multi-Dimensional Sphere. J Math Sci 234, 548–590 (2018). https://doi.org/10.1007/s10958-018-4028-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4028-1

Navigation