Skip to main content
Log in

Water-Soluble Hybrid Core–Shell Nanoparticles with Titanium Dioxide Core and Poly(Acrylic Acid) Shell

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Synthesis of new water-soluble hybrid core–shell titanium dioxide‒triethoxyvinylsilane‒poly(acrylic acid) nanoparticles consisting of titanium dioxide core with modified surface, polyacrylic acid shell, has been considered. The titanium dioxide‒triethoxyvinylsilane‒poly(acrylic acid) nanoparticles have been synthesized in two stages. At the first stage, the titanium dioxide nanoparticles surface has been modified with triethoxyvinylsilane. The so introduced surface vinyl groups of the titanium dioxide‒triethoxyvinylsilane nanoparticles have been used to graft poly(acrylic acid). To do so, free-radical polymerization of acrylic acid in the presence of the titanium dioxide‒triethoxyvinylsilane nanoparticles has been performed at the second stage. Molecular parameters of the obtained titanium dioxide‒triethoxyvinylsilane‒poly(acrylic acid) nanoparticles have been determined by means of static and dynamic light scattering, and their structure has been confirmed by means of infrared spectroscopy. The proposed procedure of modifying the surface of titanium dioxide opens up the possibility of obtaining water-soluble materials based on it for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Tekin, D. Birhan, and H. Kiziltas, Mater. Chem. Phys. 251, 123067 (2020).

  2. P. Barala and V. Hooda, J. Soil Sci. Plant Nutr. 22 (3), 2992 (2022).

    Article  CAS  Google Scholar 

  3. U. Diebold, Surf. Sci. Rep. 48 (1), 53 (2002).

    Article  Google Scholar 

  4. D. Ziental, B. Czarczynska-Goslinska, D. T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T. Goslinski, and L. Sobotta, Nanomaterials 10 (2), 387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. B. Warheit and S. C. Brown, Toxicol. Lett. 302, 42 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. S. Al. Jitan, G. Palmisano, and C. Garlisi, Catalysts 10 (2), 227 (2020).

    Google Scholar 

  7. W. Hu, S. Yang, and S. Yang, Trends Chem. 2 (2), 148 (2020).

    Article  CAS  Google Scholar 

  8. N. Veronovski, in Titanium Dioxide – Material for a Sustainable Environment, Ed. by D. Yang (IntechOpen, 2018), Chap. 21.

    Google Scholar 

  9. C. Byrne, G. Subramanian, and S. C. Pillai, J. Environ. Chem. Eng. 6, 3531 (2018).

    Article  CAS  Google Scholar 

  10. J. C. Colmenares, R. S. Varma, and P. Lisowski, Green Chem. 18, 5736 (2016).

    Article  CAS  Google Scholar 

  11. A. A. Krasilin, I. S. Bodalyov, A. A. Malkov, E. K. Khrapova, T. P. Maslennikova, and A. A. Malygin, Nanosyst.: Phys., Chem., Math. 9, 410 (2018).

    CAS  Google Scholar 

  12. I. V. Kolesnik, V. A. Lebedev, and A. V. Garshev, Nanosyst.: Phys., Chem., Math. 9, 401 (2018).

    CAS  Google Scholar 

  13. D. A. Kozlov, V. A. Lebedev, A. Yu. Polyakov, K. M. Khazova, and A. V. Garshev, Nanosyst.: Phys., Chem., Math. 9, 266 (2018).

    CAS  Google Scholar 

  14. J. Szanyi and J. H. Kwak, J. Mol. Catal. A: Chem. 406, 213 (2015).

    Article  CAS  Google Scholar 

  15. E. S. Ulyanova, D. A. Zamyatin, V. Yu. Kolosov, and E. V. Shalaeva, Nanosyst.: Phys., Chem., Math. 11, 480 (2020).

    CAS  Google Scholar 

  16. A. Yu. Zavialova, A. N. Bugrov, R. Yu. Smyslov, D. A. Kirilenko, T. V. Khamova, G. P. Kopitsa, C. Licitra, and D. Rouchon, Nanosyst.: Phys., Chem., Math. 10, 361 (2019).

    CAS  Google Scholar 

  17. Y. Wang, C. Sun, X. Zhao, B. Cui, Z. Zeng, A. Wang, G. Liu, and H. Cui, Nanoscale Res. Lett. 11, 529 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. P. A. Morozova and D. I. Petukhov, Nanosyst.: Phys., Chem., Math. 8, 823 (2017).

    CAS  Google Scholar 

  19. A. S. Ganeshraja and K. Anbalagan, Nanosyst.: Phys., Chem., Math. 4, 276 (2013).

    CAS  Google Scholar 

  20. M. J. Gazquez, JP. Bolivar, R. Garcia-Tenorio, and F. Vaca, Mater. Sci. Appl. 5, 441 (2014).

    Google Scholar 

  21. C. O. Dimkpa, J. Basic Microbiol. 54, 889 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. J. Peller, O. Wies, and P. V. Kamat, J. Phys. Chem. A 108, 10925 (2004).

    Article  CAS  Google Scholar 

  23. J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, and X. Wang, J. Environ. Sci. (Beijing, China) 75, 40 (2019).

    Article  CAS  Google Scholar 

  24. R. Rella, A. Rizzo, A. Licciulli, P. Sicilianoa, L. Troisid, and L. Vallic, Mater. Sci. Eng., C 22 (2), 439 (2002).

    Article  Google Scholar 

  25. K. Cai, F. Jiang, Z. Luo, and X. Chen, Adv. Eng. Mater. 12 (9), 565 (2010).

    Google Scholar 

  26. M. S. Curcio, M. C. Canela, and W. R. Waldman, Eur. Polym. J. 101, 177 (2018).

    Article  CAS  Google Scholar 

  27. H. N. Guan, D. F. Chi, J. Yu, and X. C. Li, Pestic. Biochem. Physiol. 92, 83 (2008).

    Article  CAS  Google Scholar 

  28. K. S. Yao, D. Y. Wang, W. Y. Ho, J. J. Yan, and K. C. Tzeng, Surf. Coat. Technol. 201, 6886 (2007).

    Article  CAS  Google Scholar 

  29. K. S. Yao, D. Y. Wang, C. Y. Chang, K. W. Weng, L. Y. Yang, S. J. Lee, T. C. Cheng, and C. C. Hwang, Surf. Coat. Technol. 202, 1329 (2007).

    Article  CAS  Google Scholar 

  30. H. Cui, G. Yang, J. Jiang, P. Zhang, and W. Gu, Aust. J. Crop Sci. 7, 99 (2013).

    CAS  Google Scholar 

  31. O. A. Shilova, T. V. Khamova, G. G. Panova, D. L. Kornyukhin, L. M. Anikina, A. M. Artemyeva, and A. E. Baranchikov, Russ. J. Appl. Chem 93 (1), 25 (2020).

    Article  CAS  Google Scholar 

  32. L. R. Khot, S. Sankaran, J. M. Maja, R. Ehsani, and E. W. Schuster, Crop Prot. 35, 64 (2012).

    Article  CAS  Google Scholar 

  33. L. Zheng, F. Hong, S. Lu, and C. Liu, Biol. Trace Elem. Res. 104, 83 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. G. Song, Y. Gao, H. Wu, W. Hou, C. Zhang, and H. Ma, Environ. Toxicol. Chem. 31, 2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. F. Yang, C. Liu, F. Gao, M. Su, X. Wu, L. Zheng, F. Hong, and P. Yang, Biol. Trace Elem. Res. 119, 77 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. R. Raliya, P. Biswas, and J. C. Tarafdar, Biotechnol. Rep. 5, 22 (2015).

    Article  Google Scholar 

  37. N. G. M. Palmqvist, S. Bejai, J. Meijer, G. A. Seisenbaeva, and V. G. Kessler, Sci. Rep. 5, 10146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Wang, L. Liu, S. Jiang, S. Li, T. Lan, L. Zu, and S. Dong, ChemistrySelect 5, 4695 (2020).

    Article  CAS  Google Scholar 

  39. M. Kopec, J. Spanjers, E. Scavo, D. Ernens, J. Duvigneau, and G. Julius Vancso, Eur. Polym. J. 106, 291 (2018).

    Article  CAS  Google Scholar 

  40. T. B. Mai, T. N. Tran, L. G. Bach, J. M. Park, and K. T. Lim, Mol. Cryst. Liq. Cryst. 602, 118 (2014).

    Article  CAS  Google Scholar 

  41. G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen, and J. Zhang, J. Membr. Sci. 436, 163 (2013).

    Article  CAS  Google Scholar 

  42. Z.-L. Gong, D.-Y. Tang, and Y.-D. Guo, J. Mater. Chem. 22, 16872 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Agreement no. 22-26-20087, March 25, 2022; project 22-26-20087) and St. Petersburg Science Foundation (Agreement no. 01/2022, April 12, 2022; project 22-26-20087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Krasnopeeva.

Ethics declarations

A. V. Yakimansky is a member of Editorial Board of Polymer Science, Series B journal. Other authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnopeeva, E.L., Panova, G.G., Laishevkina, S.G. et al. Water-Soluble Hybrid Core–Shell Nanoparticles with Titanium Dioxide Core and Poly(Acrylic Acid) Shell. Polym. Sci. Ser. B 65, 974–979 (2023). https://doi.org/10.1134/S156009042360033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042360033X

Navigation