Skip to main content
Log in

Electrical Conductivity and EMI Shielding Efficiency of PPY-PVA-Ni Nanocomposite Films

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Conducting polymers with metal/metal oxide nanocomposites have recently attracted more attention from both the scientific sector and industry, with a focus on electrical and electromagnetic interference (EMI) shielding applications. Free-standing PPY-PVA/Ni (1, 2, 3, 4, and 5) ternary composite films were chemically synthesized by in situ chemical oxidative polymerization of pyrrole and polyvinyl alcohol (PVA, binder matrix) using ammonium persulfate as the oxidizing agent and coated with different concentrations (0.01, 0.02, 0.03, 0.04, and 0.05 M) of Ni+ ions using Adathoda vasica leaf extract as a reducing agent. The effect of PPY-PVA/Ni nanocomposites on the electrical and EMI shielding properties of nanocomposites was studied. The crystal structure of the dopant (Ni nanoparticles), thermal degradation and morphology of these composites were characterized by XRD, FESEM and TG analysis. The maximum electrical conductivity (4.2 × 10–4 S/cm) was also achieved by doping PPY-PVA binary composites with 0.01 M Ni+ ions to form PPY-PVA/Ni-1 ternary nanocomposites. This significant increase in electrical conductivity achieves an EMI shielding effect of up to ~16.5 dB in the frequency range from 2.1 to 3 GHz (S-Band). An increase in electrical conductivity and EMI shielding for composites with hybrid fillers (PPY-PVA/Ni) demonstrates the synergistic benefits of such fillers when used together. Hence, these conducting polymers with metal/metal oxide nanocomposites could have the potential to be advantageous materials for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Davis, L. Birnbaum, P. Ben-Ishai, H. Taylor, M. Sears, T. Butler, and T. Scarato, Curr. Probl. Pediatr. Adolesc. Health Care 53, 101374 (2023).

  2. V. Karthik, B. Karuna, P. S. Kumar, A. Saravanan, and R. V. Hemavathy, Chemosphere 299, 134427 (2022).

  3. B. Wang, C. Lin, H. Cheng, X. Duan, Q. Wang, and D. Xu, Int. J. Environ. Res. Public Health 18, 11409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Wang, L. Cheng, and L. Zhang, Carbon 125, 207 (2017).

    Article  CAS  Google Scholar 

  5. R. R. Mohan, A. Abhilash, M. Mani, S. J. Varma, and S. Jayalekshmi, Mater. Chem. Phys. 290, 126647 (2022).

  6. Z. Shen, H. Yang, C. Liu, E. Guo, S. Huang, and Z. Xiong, Carbon 185, 464 (2021).

    Article  CAS  Google Scholar 

  7. S. Li, Y. Sun, M. Guan, X. Jiang, and H. Yu, Chem. Eng. J. 462, 141983 (2023).

  8. B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che, R. Zhang, and C. B. Park, J. Mater. Chem. A 9, 8896 (2021).

    Article  CAS  Google Scholar 

  9. Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li, J. Zheng, and G. Ji, Small Sci. 2, 2100077 (2022).

  10. J. J. Licari, Coating Materials for Electronic Applications–Polymers, Processes, Reliability, Testing (William Andrew, Norwich, NY, 2003).

    Google Scholar 

  11. Z. Osawa and S. Kuwabara, Polym. Degrad. Stab. 35, 33 (1992).

    Article  CAS  Google Scholar 

  12. S. Uday, H. Chawla, A. Chandra, and S. Garg, in Photocatalysis for Environmental Remediation and Energy Production: Recent Advances and Applications (Springer, 2023), pp. 417–438.

    Google Scholar 

  13. C. Wang, Y. Liu, Y. Sun, L. Cui, and J. Liu, J. Mater. Chem. A 11, 7639 (2023).

    Article  CAS  Google Scholar 

  14. A. N. Al-hakimi, F. Alminderej, I. A. Alhagri, S. M. Al-Hazmy, M. O. Farea, and E. M. Abdallah, J. Mater. Sci. Mater. Electron. 34, 238 (2023).

    Article  CAS  Google Scholar 

  15. B. Patel, M. Revanasiddappa, S. Yallappa, and D. R. Rangaswamy, J. Mater. Sci. Mater. Electron. 34, 1 (2023).

    Article  Google Scholar 

  16. X. Fu, H. Tong, Y. Wu, K. Zhang, X. Sheng, L. Douadji, G. He, Z. Qiu, B. Zhou, and S. Kang, ACS Appl. Nano Mater. 6, 8772 (2023).

    CAS  Google Scholar 

  17. W. Song, X. Zhao, Z. Jin, L. Fan, X. Ji, J. Deng, and J. Duan, J. Clean. Prod. 394, 136390 (2023).

  18. U. Riaz, N. Singh, F. Rashnas Srambikal, and S. Fatima, Polym. Bull. 80, 1085 (2023).

    Article  CAS  Google Scholar 

  19. Y. Zhao, H. Liu, Y. Yan, T. Chen, H. Yu, L. O. Ejeta, G. Zhang, and H. Duan, Energy Environ. Mater. 6, e12303 (2023).

  20. T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. H. Kadhum, A. B. Mohamad, and A. A. Al-Amiery, Molecules 20, 22833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Das and D. Sarkar, Polym. Bull. 75, 3109 (2018).

    Article  Google Scholar 

  22. W. Gan, C. Chen, M. Giroux, G. Zhong, M. M. Goyal, Y. Wang, W. Ping, J. Song, S. Xu, and S. He, Chem. Mater. 32, 5280 (2020).

    Article  CAS  Google Scholar 

  23. A. Iqbal, T. Hassan, Z. Gao, F. Shahzad, and C. M. Koo, Carbon 203, 542 (2023).

    Article  CAS  Google Scholar 

  24. J. T. Orasugh and S. S. Ray, ACS Omega 8, 8134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. K. Min, T. Eom, H. Kim, D. Kang, and S.-E. Lee, Polymers 15, 1171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Yang, Y. Chen, C. Liu, H. Wang, X. Yan, X. Chai, Z. Chen, Y. Xia, H. Gao, and H. Zhang, J. Mater. Res. Technol. 23, 5115 (2023).

    Article  CAS  Google Scholar 

  27. T. Kuang, M. Zhang, F. Chen, Y. Fei, J. Yang, M. Zhong, B. Wu, and T. Liu, Adv. Compos. Hybrid Mater. 6, 48 (2023).

    Article  CAS  Google Scholar 

  28. J. Srivastava, P. Kumar Khanna, P. V More, and N. Singh, Adv. Mater. Lett. 8, 42 (2017).

    Article  CAS  Google Scholar 

  29. A. Olad and S. Shakoori, J. Magn. Magn. Mater. 458, 335 (2018).

    Article  CAS  Google Scholar 

  30. X. Tang and K. Hu, Mater. Sci. Eng., B 139, 119 (2007).

    Article  CAS  Google Scholar 

  31. Y. Zhu, Y. Pan, H. Xu, and J. Guo, J. Non-Cryst. Solids 355, 785 (2009).

    Article  CAS  Google Scholar 

  32. J. Bhadra and D. Sarkar, Indian J. Phys. 84, 1321 (2010).

    Article  CAS  Google Scholar 

  33. A. M. Naji, I. Y. Mohammed, S. H. Mohammed, M. K. A. Mohammed, D. S. Ahmed, M. S. Jabir, and A. M. Rheima, Mater. Lett. 322, 132473 (2022).

  34. P. B. Bhargav, V. M. Mohan, A. K. Sharma, and V. V. R. N. Rao, Int. J. Polym. Mater. 56, 579 (2007).

    Article  CAS  Google Scholar 

  35. Y. Xia, Z. He, K. Hu, B. Tang, J. Su, Y. Liu, and X. Li, J. Alloys Compd. 753, 356 (2018).

    Article  CAS  Google Scholar 

  36. G. M. Elkomy, S. M. Mousa, and H. A. Mostafa, Arab. J. Chem. 9, S1786 (2016).

    Article  CAS  Google Scholar 

  37. A. S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P. C. Ramamurthy, Composites, Part B 47, 314 (2013).

    Article  CAS  Google Scholar 

  38. M. Hema, S. Selvasekerapandian, G. Hirankumar, A. Sakunthala, D. Arunkumar, and H. Nithya, J. Phys. Chem. Solids 70, 1098 (2009).

    Article  CAS  Google Scholar 

  39. W. Chen, X. Li, G. Xue, Z. Wang, and W. Zou, Appl. Surf. Sci. 218, 216 (2003).

    Article  Google Scholar 

  40. S. Mallakpour and F. Motirasoul, Prog. Org. Coatings 103, 135 (2017).

    Article  CAS  Google Scholar 

  41. M. Helen, B. Viswanathan, and S. S. Murthy, J. Memb. Sci. 292, 98 (2007).

    Article  CAS  Google Scholar 

  42. L. M. Al-Harbi, Q. A. Alsulami, M. O. Farea, and A. Rajeh, J. Mol. Struct. 1272, 134244 (2023).

  43. A. A. Menazea, H. A. Ibrahium, N. S. Awwad, M. E. Moustapha, M. O. Farea, and M. A. Bajaber, J. Mater. Res. Technol. 18, 2273 (2022).

    Article  CAS  Google Scholar 

  44. K. Bindu, K. M. Ajith, and H. S. Nagaraja, J. Alloys Compd. 735, 847 (2018).

    Article  CAS  Google Scholar 

  45. P. S. Kanavi, S. Meti, R. H. Fattepur, V. B. Patil, S. M. Hunagund, S. A. Patil, and S. R. Inamdar, J. Nanoparticle Res. 24, 1 (2022).

    Article  Google Scholar 

  46. N. Parvatikar, S. Jain, C. M. Kanamadi, B. K. Chougule, S. V Bhoraskar, and M. V. N. A. Prasad, J. Appl. Polym. Sci. 103, 653 (2007).

    Article  CAS  Google Scholar 

  47. N. Rezlescu and E. Rezlescu, Phys. Status Solidi 23, 575 (1974).

    Article  CAS  Google Scholar 

  48. J. E. Bao, J. Zhou, Z. X. Yue, L. T. Li, and Z. L. Gui, Mater. Sci. Eng. B 99, 98 (2003).

    Article  Google Scholar 

  49. S. Mukherjee, N. M. Anjan Kumar, B. Karthikeyan, and N. Kamaraju, Appl. Phys. A 129, 343 (2023).

    Article  CAS  Google Scholar 

  50. M. A. Chougule, G. D. Khuspe, S. Sen, and V. B. Patil, Appl. Nanosci. 3, 423 (2013).

    Article  CAS  Google Scholar 

  51. A. Karthikeyan, P. Vinatier, and A. Levasseur, Bull. Mater. Sci. 23, 179 (2000).

    Article  CAS  Google Scholar 

  52. D. R. Macfarlane, F. Zhou, and M. Forsyth, Solid State Ionics 113, 193 (1998).

    Article  Google Scholar 

  53. S. Maity and A. Chatterjee, J. Ind. Text. 47, 2228 (2018).

    Article  CAS  Google Scholar 

  54. P. Saini and M. Arora, New Polym. Spec. Appl. 3, 73 (2012).

    Google Scholar 

  55. L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu, C. Liang, J. Kong, L. Chen, and J. Gu, Composites, Part A 123, 293 (2019).

    Article  CAS  Google Scholar 

  56. J.-M. Chiou, Q. Zheng, and D. D. L. Chung, Composites 20, 379 (1989).

    Article  CAS  Google Scholar 

  57. A. Das, H. T. Hayvaci, M. K. Tiwari, I. S. Bayer, D. Erricolo, and C. M. Megaridis, J. Colloid Interface Sci. 353, 311 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. S.-T. Hsiao, C.-C. M. Ma, H.-W. Tien, W.-H. Liao, Y.‑S. Wang, S.-M. Li, C.-Y. Yang, S.-C. Lin, and R.‑B. Yang, ACS Appl. Mater. Interfaces 7, 2817 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. G. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the management of PES University, Electronic City Campus, Bangalore, and the Vision Group on Science and Technology for their support in conducting this research under grant PESUIRF/Chemistry-ECC/2020/14 of September 30, 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Revanasiddappa or S. Yallappa.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmi, H.M., Revanasiddappa, M., Ramakrishna, B.N. et al. Electrical Conductivity and EMI Shielding Efficiency of PPY-PVA-Ni Nanocomposite Films. Polym. Sci. Ser. B 65, 963–973 (2023). https://doi.org/10.1134/S1560090423600262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090423600262

Navigation