Skip to main content
Log in

Comparative Analysis of Magnetorheological Effect in Soft Isotropic and Anisotropic Magnetoactive Elastomers

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Magnetoactive elastomers based on polydimethylsiloxane and magnetic carbonyl iron microparticles with different distribution of the magnetic filler in the polymer matrix have been synthesized. Series of “soft” isotropic and anisotropic (synthesized in external magnetic field) samples without any low-molecular weight plasticizer and magnetic particles concentration 50‒83 wt % have been obtained. Their viscoelastic properties in the absence of magnetic field and in the magnetic field with B = 1 T have been investigated. It has been shown that the values of the components of the dynamic shear modulus of anisotropic samples are more than twice higher in comparison with the isotropic analogs, their relative increase in the magnetic field being approximately the same. At the same time, the loss factor has been significantly decreased by the magnetic field application, reaching 0.1 for the composites with high content of the magnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. Sutrisno, A. Purwanto, and S. A. Mazlan, Adv. Eng. Mater. 17, 563 (2015).

    Article  Google Scholar 

  2. S. B. Choi, W. Li, M. Yu, H. Du, J. Fu, and P. X. Do, Smart Mater. Struct. 25, 043001 (2016).

  3. G. Filipcsei, I. Csetneki, A. Szilagyi, and M. Zrinyi, Adv. Polym. Sci. 206, 137 (2007).

    Article  CAS  Google Scholar 

  4. M. Shamonin and E. Yu. Kramarenko, Novel Magnetic Nanostructures (Elsevier, Amsterdam, 2018).

    Google Scholar 

  5. T. Gundermann, P. Cremer, H. Löwen, A. M. Menzel, and S. Odenbach, Smart Mater. Struct. 26, 045012 (2017).

  6. G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, L. V. Nikitin, E. Y. Kramarenko, and A. R. Khokhlov, Polymer 48, 488 (2007).

    Article  CAS  Google Scholar 

  7. A. Stoll, M. Mayer, G. J. Monkman, and M. Shamonin, J. Appl. Polym. Sci. 131, 39793 (2014).

    Article  Google Scholar 

  8. S. S. Abramchuk, D. A. Grishin, E. Yu. Kramarenko, G. V. Stepanov, and A. R. Khokhlov, Polym. Sci., Ser. A 48 (2), 138 (2006).

    Article  Google Scholar 

  9. G. V. Stepanov, E. Y. Kramarenko, and D. A. Semerenko, J. Phys. Conf. Ser. 412, 012031 (2013).

  10. E. Galipeau and P. Ponte Castaneda, Proc. Royal Soc. A 469, 20130385 (2013).

  11. M. Yu, H. Luo, J. Fu, and P. Yang, J. Intell. Mater. Syst. Struct. 29, 24 (2018).

    Article  CAS  Google Scholar 

  12. I. Bica, J. Ind. Eng. Chem 16, 359 (2010).

    Article  CAS  Google Scholar 

  13. S. A. Kostrov, M. Shamonin, G. V. Stepanov, and E. Yu. Kramarenko, Int. J. Molec. Sci. 20, 2230 (2019).

    Article  CAS  Google Scholar 

  14. R. Moucka, M. Sedlacik, and M. Cvek, Appl. Phys. Lett. 112, 122901 (2018).

  15. T. Tian and M. Nakano, J. Intell. Mater. Syst. Struct. 29, 151 (2018).

    Article  CAS  Google Scholar 

  16. W. H. Li and X. Z. Zhang, Smart Mater. Struct. 19, 035002 (2010).

  17. M. M. Schmauch, S. R. Mishra, B. A. Evans, O. D. Velev, and J. B. Tracy, ACS Appl. Mater. Interfaces 9, 11895 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. L. Ding, J. Zhang, Q. Shu, S. Liu, S. Xuan, X. Gong, and D. Zhang, ACS Appl. Mater. Interfaces 13, 13724 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. D. Lin, F. Yang, D. Gong, Z. Lin, R. Li, W. Qian, C. Li, S. Jia, and H. Chen, ACS Appl. Mater. Interfaces 13, 34935 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, and Y. Shen, Nature Commun. 9, 1 (2018).

    Article  Google Scholar 

  21. M. Farshad and A. Benine, Polym. Test. 23, 347 (2004).

    Article  CAS  Google Scholar 

  22. J. G. Puente-Córdova, M. E. Reyes-Melo, L. M. Palacios-Pineda, I. A. Martínez-Perales, O. Martínez-Romero, and A. Elías-Zúñiga, Polymers 10, 1343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. G. B. Sohoni and J. E. Mark, J. Appl. Polym. Sci. 34, 2853 (1987).

    Article  CAS  Google Scholar 

  24. T. L. Sun, X. L. Gong, W. Q. Jiang, J. F. Li, Z. B. Xu, and W. H. Li, Polym. Test. 27, 520 (2008).

    Article  CAS  Google Scholar 

  25. J. Wu, X. Gong, Y. Fan, and H. Xia, Smart Mater. Struct. 19, 105007 (2010).

  26. J. Kaleta, M. Królewicz, and D. Lewandowski, Smart Mater. Struct. 20, 085006 (2011).

  27. T. H. Nam, I. Petríková, and B. Marvalová, Polym. Test. 81, 106272 (2020).

  28. V. A. Bautin, E. V. Kostitsyna, N. S. Perov, and N. A. Usov, Comp. Commun. 22, 100459 (2020).

  29. L. Chen, X. L. Gong, and W. H. Li, Smart Mater. Struct. 16, 2645 (2007).

    Article  Google Scholar 

  30. M. A. Khanouki, R. Sedaghati, and M. Hemmatian, Composites B 176, 107311 (2019).

  31. M. R. Jolly, J. D. Carlson, and B. C. Munoz, Smart Mater. Struct. 5, 607 (1996).

    Article  CAS  Google Scholar 

  32. D. Ivaneyko, V. Toshchevikov, and M. Saphiannikova, Polymer 147, 95 (2018).

    Article  CAS  Google Scholar 

  33. T. F. Tian, W. H. Li, G. Alici, H. Du, and Y. M. Deng, Rheol. Acta 50 (9‒10), 825 (2011).

    Article  CAS  Google Scholar 

  34. V. V. Sorokin, E. Ecker, G. V. Stepanov, M. Shamonin, G. J. Monkman, E. Yu. Kramarenko, and A. R. Khokhlov, Soft Matter 10, 8765 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. S. A. Kostrov, V. V. Gorodov, B. O. Sokolov, A. M. Muzafarov, and E. Y. Kramarenko, Polym. Sci., Ser. A 62 (4), 383 (2020).

    Article  CAS  Google Scholar 

  36. A. R. Payne, J. Appl. Polym. Sci. 9, 2273 (1965).

    Article  CAS  Google Scholar 

  37. S. Richter, M. Saphiannikova, K. W. Stöckelhuber, and G. Heinrich, Macromol. Symp. 291, 193 (2010).

    Article  Google Scholar 

  38. R. Hentschke, eXPRESS Polym. Lett. 11, 278 (2017).

    Article  CAS  Google Scholar 

  39. V. V. Sorokin, G. V. Stepanov, M. Shamonin, G. J. Monkman, and E. Y. Kramarenko, Smart Mater. Struct. 26, 035019 (2017).

Download references

ACKNOWLEDGMENTS

Authors acknowledge financial support from the Foundation for Development of Theoretical Physics and Mathematics “BAZIS.”

Funding

This study was financially supported by the Russian Science Foundation (project code 19-13-00340-П). The NMR, GPC, and SEM experiments performed in Collaborative Research Center “Center for Polymer Research” of ISPM RAS supported by Ministry of Science and Higher Education of Russian Federation (topic no. 0071-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kramarenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostrov, S.A., Gorodov, V.V., Muzafarov, A.M. et al. Comparative Analysis of Magnetorheological Effect in Soft Isotropic and Anisotropic Magnetoactive Elastomers. Polym. Sci. Ser. B 64, 888–896 (2022). https://doi.org/10.1134/S1560090422700579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700579

Navigation