Skip to main content
Log in

DFT Calculations of Some Important Radicals Used in the Nitroxide-Mediated Polymerization and Their HOMOLUMO, Natural Bond Orbital, and Molecular Electrostatic Potential Comparative Analysis

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Nitroxide radicals are important organic compounds, the stability of which is governed by a degree of delocalization of an unpaired electron and steric hindrances in their molecules. The most stable radicals can be identified by theoretical methods. The B3PW91/6-31G + (d, p) density functional theory calculation for the 2,2,5,5-tetramethylpyrrolidine-N-oxyl nitroxide, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, (2,2,8,8-tetramethyl-4-oxoazocan-1-yl)oxidanyl, 1,1,3,3-tetramethylisoindolin-N-oxyl nitroxide, 2,2,10,10-tetraethyl-isoindolin-N-oxyl, di-tert-buthyl nitroxide, 2,2,5,5-tetramethyl-4-phenyl-3-azahexane-N-oxyl, and N-(2-methylpropyl)-N-(1-diethyl-phosphono-2,2-dimethylpropyl)-N-oxyl nitroxide radicals has been made. The FTIR and UV–Vis vibrational frequencies have been calculated by the same method. It is shown that the shortest N‒O bond length (1.2684 Å) is observed in the 1,1,3,3-tetramethylisoindolin-N-oxyl nitroxide radical. It has been found that the most stable of the investigated radicals is 2,2,10,10-tetraethyl-isoindolin-N-oxyl, which is indicated by the low EHOMO‒LUMO value for this substance. For all the examined nitroxides, the electron density, electrostatic potential surfaces, and natural bond orbital data have been obtained. The natural bond orbital analysis has confirmed the electron density delocalization within the nitroxide radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. Klumperman, “Reversible Deactivation Radical Polymerization,” in Encyclopedia of Polymer Science and Technology, Ed. by K. Matyjaszewski (John Wiley & Sons, Hoboken, 2002), pp. 1–27.

    Google Scholar 

  2. M. Maric, Curr. Org. Chem. 22, 1264 (2018).

    Article  CAS  Google Scholar 

  3. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, and B. Charleux, Prog. Polym. Sci. 38, 63 (2013).

    Article  CAS  Google Scholar 

  4. J. Jennings, G. He, S. M. Howdle, and P. B. Zetterlund, Chem. Soc. Rev. 45, 5055 (2016).

    Article  CAS  Google Scholar 

  5. E. Bloch, P. L. Llewellyn, T. Phan, D. Bertin, and V. Hornebecq, Chem. Mater. 21, 48 (2009).

    Article  CAS  Google Scholar 

  6. R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. Bonnet, T.N.T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, and M. Armand, Nat. Mater. 12, 452 (2013).

    Article  CAS  Google Scholar 

  7. M. Chenal, C. Boursier, Y. Guillaneuf, M. Taverna, P. Couvreur, and J. Nicolas, Polym. Chem. 2, 1523 (2011).

    Article  CAS  Google Scholar 

  8. L. Deng, P. T. Furuta, S. Garon, J. Li, D. Kavulak, M. E. Thompson, and J. M. J. Fréchet, Chem. Mater. 18, 386 (2006).

    Article  CAS  Google Scholar 

  9. C. Auschra, E. Eckstein, A. Mühlebach, M.-O. Zink, and F. Rime, Prog. Org. Coat. 45, 83 (2002).

    Article  CAS  Google Scholar 

  10. H. Karoui, F. Le Moigne, O. Ouari, and P. Tordo, “Nitroxide Radicals: Properties, Synthesis and Applications,” in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Ed. by R. G. Hicks (John Wiley and Sons, Ltd., Chichester, 2010), pp. 173–229.

    Google Scholar 

  11. A. Capiomont, B. Chion, J. Lajzerowicz-Bonneteau, and H. Ternaire, J. Chem. Phys. 53, 2520 (1970).

    Article  Google Scholar 

  12. C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev. 101, 3361 (2001).

    Article  Google Scholar 

  13. S. Grimaldi, J. P. Finet, D. Siri, and P. Tordo, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 54, 1712 (1998).

    Google Scholar 

  14. H. Hayat and B. L. Silver, J. Phys. Chem. 77, 72 (1973).

    Article  CAS  Google Scholar 

  15. S. M. Mattar and A. D. Stephens, Chem. Phys. Lett. 347, 189 (2001).

    Article  CAS  Google Scholar 

  16. D. Marsh and C. Toniolo, J. Magn. Reson. 190, 211 (2008).

    Article  CAS  Google Scholar 

  17. D. Marsh, J. Magn. Reson. 190, 60 (2008).

    Article  CAS  Google Scholar 

  18. M. M. Haugland, J. E. Lovett, and E. A. Anderson, Chem. Soc. Rev. 47, 6687 (2018).

    Article  Google Scholar 

  19. R. W. Kreilick, J. Chem. Phys. 45, 1922 (1966).

    Article  CAS  Google Scholar 

  20. P. Franchi, M. Lucarini, and G. F. Pedulli, Curr. Org. Chem. 8, 1831 (2004).

    Article  CAS  Google Scholar 

  21. R. Improta and V. Barone, Chem. Rev. 104, 1231 (2004).

    Article  CAS  Google Scholar 

  22. T. Yagi and O. Kikuchi, J. Phys. Chem. A 103, 9132 (1999).

    Article  CAS  Google Scholar 

  23. G. A. A. Saracino, A. Tedeschi, G. D’Errico, R. Improta, L. Franco, M. Ruzzi, C. Corvaia, and V. Barone, J. Phys. Chem. A 106, 10700 (2002).

    Article  CAS  Google Scholar 

  24. V. Barone, P. Cimino, and E. Stendardo, J. Chem. Theory Comput. 4, 751 (2008).

    Article  CAS  Google Scholar 

  25. L. Rintoul, A. S. Micallef, and S. E. Bottle, Spectrochim. Acta, Part A 70, 713 (2008).

    Article  CAS  Google Scholar 

  26. D. Siri, A. Gaudel-Siri, and P. Tordo, J. Mol. Struct.: THEOCHEM 582, 171 (2002).

    Article  CAS  Google Scholar 

  27. E. Barim and F. Akman, J. Mol. Struct. 1195, 506 (2019).

    Article  CAS  Google Scholar 

  28. P. Demir and F. Akman, J. Mol. Struct. 1134, 404 (2017).

    Article  CAS  Google Scholar 

  29. H. Li, X. Miao, J. Zhang, J. Du, S. Xu, J. Tang, and Y. Zhang, Chem. Eng. J. 381, 122680 (2020).

  30. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  31. K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, 1998).

    Google Scholar 

  32. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

    Article  CAS  Google Scholar 

  33. M. Govindarajan, K. Ganasan, S. Periandy, and S. Mohan, Spectrochim. Acta, Part A 76, 12 (2010).

    Article  CAS  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2010).

    Google Scholar 

  35. R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission KS, 2010).

    Google Scholar 

  36. N. A. Shaheen, M. Ijjada, M. B. Vukmirovic, and R. Akolkar, J. Electrochem. Soc. 167, 143505 (2020).

  37. X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, and W. Wang, Adv. Mater. 26, 7649 (2014).

    Article  CAS  Google Scholar 

  38. T. Suga, Y. Pu, K. Oyaizu, and H. Nishide, Bull. Chem. Soc. Jpn. 77, 2203 (2004).

    Article  CAS  Google Scholar 

  39. A. Forrester and R. Thomson, Nature 203, 74 (1964).

    Article  CAS  Google Scholar 

  40. C. Berti, M. Colonna, L. Greci, and L. Marchetti, Tetrahedron 31, 1745 (1975).

    Article  CAS  Google Scholar 

  41. B. V. Trubitsin, G. E. Milanovsky, M. D. Mamedov, A. Yu. Semenov, A. N. Tikhonov, Appl. Magn. Reson. 53, 1053 (2021).

    Article  Google Scholar 

  42. V. Profant, C. Johannessen, E.W. Blanch, P. Bour, and V. Baumruk, Phys. Chem. Chem. Phys. 21, 7367 (2019).

    Article  CAS  Google Scholar 

  43. A. Sagaama, N. Issaoui, O. Al-Dossary, A. S. Kazachenko, and M. J. Wojcik, J. King Saud Univ., Sci. 33 (8), 101606 (2021).

  44. A. S. Kazachenko, F. Akman, A. Sagaama, N. Issaoui, Yu. N. Malyar, N. Yu. Vasilieva, and V. S. Borovkova, J. Mol. Model. 27, 5 (2021).

    Article  CAS  Google Scholar 

  45. M. A. Lutoshkin and A. S. Kazachenko, J. Comput. Methods Sci. Eng. 17, 851 (2017).

    CAS  Google Scholar 

  46. F. Akman, Polym. Bull. 78, 663 (2021).

    Article  CAS  Google Scholar 

  47. F. Akman, A. S. Kazachenko, N. Yu. Vasilyeva, and Yu. N. Malyar, J. Mol. Struct. 1208, 127899 (2020).

  48. A. S. Kazachenko, F. Akman, Y. N. Malyar, N. Issaoui, N. Yu. Vasilieva, and A. A. Karacharov, J. Mol. Struct. 1245, 131083 (2021).

  49. A. S. Kazachenko, F. Akman, M. Medimagh, N. Issaoui, N. Yu. Vasilieva, Yu. N. Malyar, I. G. Sudakova, A. A. Karacharov, A. V. Miroshnikova, and O. M. Al-Dossary, ACS Omega 6, 22603 (2021).

    Article  CAS  Google Scholar 

  50. A. S. Kazachenko, F. N. Tomilin, A. A. Pozdnyakova, N.Y. Vasilyeva, Y. N. Malyar, S. A. Kuznetsova, and P. V. Avramov, Chem. Pap. 74, 4103 (2020)

    Article  CAS  Google Scholar 

  51. A. S. Kazachenko, Yu. N. Malyar, S. Gatfaoui, N. Issaoui, O. Al-Dossary, M. J. Wojcikf, A. S. Kazachenko, A. V. Miroshnikova, and Y. D. Berezhnaya, J. Mol. Struct. 1251, 131998 (2022).

  52. N. Mainreck, S. Brézillon, G. D. Sockalingum, F. X. Maquart Manfait, and Y. Wegrowski, J. Pharm. Sci. 100, 441 (2011).

    Article  CAS  Google Scholar 

  53. F. Akman, Can. J. Phys. 94, 583 (2016).

    Article  CAS  Google Scholar 

  54. A. G. Gerbst, A. V. Nikolaev, D. V. Yashunsky, A. S. Shashkov, A. S. Dmitrenok, and N. E. Nifantiev, Sci. Rep. 7, 8934 (2017).

    Article  Google Scholar 

  55. I. Jomaa, O. Noureddine, S. Gatfaoui, N. Issaoui, T. Roisnel, and H. Marouani, J. Mol. Struct. 1213, 128186 (2020).

  56. S. Gatfaoui, A. Sagaama, N. Issaoui, T. Roisnel, and H. Marouani, Solid State Sci. 106, 106326 (2020).

  57. A. Sagaama and N. Issaoui, Comput. Biol. Chem. 88, 107348 (2020).

  58. A. Sagaama, O. Noureddine, S. A. Brandán, A. Jarczyk-Jędryka, H. T. Flakus, H. Ghalla, and N. Issaoui, Comput. Biol. Chem. 87, 107311 (2020).

  59. K. Karrouchi, S. Fettach, M. M. Jotani, A. Sagaama, S. Radi, H. A. Ghabbour, Y. N. Mabkhot, B. Himmii, M. El Abbes Faouzi, and N. Issaoui, J. Mol. Struct. 1221, 128800 (2020).

  60. L. Rintoul, A. S. Micallef, and S. E. Bottle, Spectrochim. Acta, Part A 70, 713 (2008).

    Article  CAS  Google Scholar 

  61. V. Barone, M. Fusè, S. M. V. Pinto, and N. A. Tasinato, Molecules 26, 7404 (2021).

    Article  CAS  Google Scholar 

  62. T. -S. Lin, J. Mol. Spectrosc. 46, 448 (1973).

    Article  CAS  Google Scholar 

  63. C. Morat and A. Rassat, Tetrahedron 28, 735 (1972).

    Article  CAS  Google Scholar 

  64. J. R. Thomas, J. Am. Chem. Soc. 82, 5955 (1960).

    Article  CAS  Google Scholar 

  65. S. E. Bottle, D. G. Gillies, D. L. Hughes, A. S. Micallef, A. I. Smirnov, L. H. Sutcliffe, J. Chem. Soc., Perkin Trans. 2, 1285 (2000).

    Article  Google Scholar 

  66. L. Catala, R. Feher, D. B. Amabilina, K. Wurst, and J. Veciana, Polyhedron 20, 1563 (2001).

    Article  CAS  Google Scholar 

  67. Organic Chemistry of Stable Free Radicals, Ed. by A. R. Forrester, J. M. Hay, and R. H. Thomson (Academic Press, New York, 1968).

    Google Scholar 

  68. E. G. Rozantsev and V. F. Sholle, Synthesis 4, 190 (1971).

    Article  Google Scholar 

  69. H. G. Aurich, in Nitrones, Nitronates and Nitroxides, Ed. by S. Patai, Z. Rappoport (John Wiley & Sons Ltd., New York, 1989), pp. 313–369.

    Google Scholar 

  70. R. I. Zhdanov, in Bioactive Spin Labels, Ed. by R. I. Zhda-nov (Springer Verlag, New York, 1992), pp. 24–78.

    Book  Google Scholar 

  71. M. A. Lutoshkin, A. I. Petrov, Yu. N. Malyar, A. S. Kazachenko, Inorg. Chem. 60, 3291 (2021).

    Article  CAS  Google Scholar 

  72. M. A. Lutoshkin, A. I. Petrov, B. N. Kuznetsov, and A. S. Kazachenko, J. Solution Chem. 48, 676 (2019).

    Article  CAS  Google Scholar 

  73. K. Żamojć, M. Zdrowowicz, A. Hać, M. Witwicki, P. B. Rudnicki-Velasquez, D. Wyrzykowski, W. Wiczk, and L. Chmurzyński, Int. J. Mol. Sci. 20, 3802 (2019).

    Article  Google Scholar 

  74. F. Peral and E. Gallego, J. Mol. Struct. 415, 187 (1997).

    Article  CAS  Google Scholar 

  75. M. Mons, I. Dimicoli, F. Piuzzi, B. Tardivel, and M. Elhanine, J. Phys. Chem. A 106, 5088 (2002).

    Article  CAS  Google Scholar 

  76. P. Zhang, Q. C. Zhang, J. J. Liu, and B. L. Yang, Catal. Today 314, 170 (2018).

    Article  CAS  Google Scholar 

  77. S.-F. Zhu, Q. Gan, and C. Feng, ACS Omega 4, 13408 (2019).

    Article  CAS  Google Scholar 

  78. Yu. V. Nelyubina, I. V. Ananyev, V. V. Novikov, and K. A. Lysenko, RSC Adv. 6, 91694 (2016).

    Article  CAS  Google Scholar 

  79. R. Caciuffo, O. Francescangeli, L. Greci, S. Melone, B. Gillon, M. Brustolon, A. L. Maniero, G. Amoretti, and P. Sgarabotto, Mol. Phys. 74, 905 (1991).

    Article  CAS  Google Scholar 

  80. A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf, Chem. Sci. 10, 9424 (2019).

    Article  CAS  Google Scholar 

  81. T. K. Kuruvilla, S. Muthu, J.C. Prasana, J. George, and S. Sevvanthi, J. Mol. Struct. 1175, 163 (2018).

    Article  Google Scholar 

  82. F. Akman, A. S. Kazachenko, and Yu. N. Malyar, Cellul. Chem. Technol. 55, 41 (2021).

    Article  CAS  Google Scholar 

  83. K. Bhavani, S. Renuga, and S. Muthu, Spectrochim. Acta, Part A 136, 1260 (2015).

    Article  CAS  Google Scholar 

  84. A. Üngördü and N. Tezer, J. Saudi Chem. Soc. 21, 837 (2017).

    Article  Google Scholar 

  85. A. Kumar and M. D. Sevilla, J. Phys. Chem. B 122, 98 (2017).

    Article  Google Scholar 

  86. I. Jomaa, N. Issaoui, T. Roisnel, and H. Marouani, J. Mol. Struct. 1242, 130730 (2021).

  87. I. Ben Khemis, A. Sagaama, N. Issaoui, and A. Ben Lamine, Int. J. Biol. Macromol. 188, 333 (2021).

    Article  CAS  Google Scholar 

  88. A. S. Kazachenko, F. Akman, N. Y. Vasilieva, N. Issaoui, Y. N. Malyar, A. A. Kondrasenko, V. S. Borovkova, A. V. Miroshnikova, A. S. Kazachenko, O. Al-Dossary, M. J. Wojcik, Y. D. Berezhnaya, and E. V. Elsuf’ev, Int. J. Mol. Sci. 23, 1602 (2022).

    Article  CAS  Google Scholar 

  89. S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, N. Selvapalam, and G. Dass, J. Photochem. Photobiol. 6, 100022 (2021).

  90. S. Sevvanthi, S. Muthu, and M. Raja, J. Mol. Struct. 1173, 251 (2018).

    Article  CAS  Google Scholar 

  91. D. Sharma and S. N. Tiwari, J. Mol. Liq. 214, 128 (2016).

    Article  CAS  Google Scholar 

  92. J. S. Murray and P. Politzer, Comput. Mol. Sci. 7, e1326 (2017).

  93. M. Drissi, N. Benhalima, Y. Megrouss, R. Rachida, A. Chouaih, and F. Hamzaoui, Molecules 20, 4042 (2015).

    Article  CAS  Google Scholar 

  94. A. Bauzá, S. K. Seth, and A. Frontera, J. Comput. Chem. 39, 458 (2017).

    Article  Google Scholar 

  95. F. Weinhold, C. R. Landis, and E. D. Glendening, Int. Rev. Phys. Chem. 35, 399 (2016).

    Article  CAS  Google Scholar 

  96. J. P. Foster, and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980).

    Article  CAS  Google Scholar 

  97. K. B. Benzon, H. T. Varghese, C. Y. Panicker, K. Pradhan, B. K. Tiwary, A. K. Nanda, and C. Van Alsenoy, Spectrochim. Acta, Part A 146, 307 (2015).

    Article  CAS  Google Scholar 

  98. I. Novak, L. J. Harrison, B. Kovač, and L. M. Pratt, J. Org. Chem. 69, 7628 (2004).

    Article  CAS  Google Scholar 

  99. S. Hong-Chang and L. Yong, Mol. Catal. 271, 32 (2007).

    Article  Google Scholar 

  100. Vibrational Frequency Scaling Factors. https://cccbdb.nist.gov/vsfx.asp. Cited 2022.

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Bingöl University for providing the server and the Bitlis Eren University for providing the Gaussian software.

Funding

This study was carried out in part within the plan no. 0287-2021-0017 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr S. Kazachenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feride Akman, Kazachenko, A.S. & Issaoui, N. DFT Calculations of Some Important Radicals Used in the Nitroxide-Mediated Polymerization and Their HOMOLUMO, Natural Bond Orbital, and Molecular Electrostatic Potential Comparative Analysis. Polym. Sci. Ser. B 64, 765–777 (2022). https://doi.org/10.1134/S156009042270035X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042270035X

Navigation