Skip to main content
Log in

Study of Structural, Thermal and Electrical Properties of Functionalized Multiwalled Carbon Nanotubes–Polyaniline Composites

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

This paper discusses the various ways for synthesizing polyaniline (PANI) and hybrid carbon nanotube (CNT) reinforced PANI nanocomposites. A series of polyaniline/functionalized multi-walled carbon nanotubes (PANI/f-MWCNTs) nanocomposites with varying concentrations (0–20% wt/wt) of f‑MWCNTs in PANI were prepared using in situ polymerization of aniline in an aqueous dispersion of f‑MWCNTs using FeCl3·6H2O as an oxidant. Functionalization of MWCNTs was achieved by their acid treatment. The dispersion of functionalized carbon nanotubes, filler concentration, and their alignment in the interior of PANI matrix affect their morphology. The structure and morphology of the obtained pure PANI and PANI/f-MWCNTs nanocomposites were characterized by using X-rays diffraction (XRD) and scanning electron microscopy (SEM). These techniques indicate that f-MWCNTs act as the core in the formation of a coaxial nanostructure. Thermogravimetric analysis (TGA) was carried out to study the thermal stability of the nanocomposites and the pristine polymer, which showed that the thermal stability of the nanocomposites increased with the increasing content of f-MWCNTs in PANI. The effect of MWCNT on the transport properties of PANI in the form of the transport parameters such as charge localization length, most probable hopping distance, and charge hopping energy in the temperature range 300–423 K was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Iijima and T. Ichihashi, Nature 363 (6430), 603 (1993).

    Article  CAS  Google Scholar 

  2. L. S. Schadler, S. A. Giannaris, and P. M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  CAS  Google Scholar 

  3. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).

    Article  CAS  Google Scholar 

  4. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Science 297 (5582), 787 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. L. Dai and A. W. Mau, Adv. Mater. 13, 899 (2001).

    Article  CAS  Google Scholar 

  6. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, Synth. Met. 116, 369 (2001).

    Article  CAS  Google Scholar 

  7. E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).

    Article  CAS  Google Scholar 

  8. H. Ago, K. Petritsch, M. S. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater. 11, 1281 (1999).

    Article  CAS  Google Scholar 

  9. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater. 10, 1091 (1998).

    Article  CAS  Google Scholar 

  10. I. S. Strakhov, A. I. Rodnaya, Y. O. Mezhuev, Y. V. Korshak, and T. A. Vagramyan, Russ. J. Appl. Chem. 87, 1918 (2014).

    Article  CAS  Google Scholar 

  11. P. L. Taberna, P. Simon, and J. F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003).

    Article  CAS  Google Scholar 

  12. M. Mallouki, F. Tran-Van, C. Sarrazin, P. Simon, B. Daffos, A. De, C. Chevrot, and J. F. Fauvarque, J. Solid State Electrochem. 11, 398 (2007).

    Article  CAS  Google Scholar 

  13. B. A. Bolto, R. McNeill, and D. E. Weiss, Aust. J. Chem. 16, 1090 (1963).

    Article  CAS  Google Scholar 

  14. J. Howard and V. F. Becker, US Patent No. 42304254A (1954).

  15. B. E. Conway, “Introduction and Historical Perspective,” in Electrochemical Supercapacitors (Springer, Boston, MA, 1999), pp. 1‒9.

    Book  Google Scholar 

  16. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265 (5176), 1212 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. A. Kumar, V. Kumar, and K. Awasthi, Polym.-Plast. Technol. Eng. 57, 70 (2018).

    Article  CAS  Google Scholar 

  18. T. M. Wu and Y. W. Lin, Polymer 47, 3576 (2006).

    Article  CAS  Google Scholar 

  19. S. G. Bachhav and D. R. Patil, Am. J. Mater. Sci. 5 (4), 90 (2015).

    Google Scholar 

  20. M. Trchová, E. N. Konyushenko, J. Stejskal, J. Kovářová, and G. Ćirić-Marjanović, Polym. Degrad. Stab. 94, 929 (2009).

    Article  Google Scholar 

  21. T. M. Wu, Y. W. Lin, and C. S. Liao, Carbon 43, 734 (2005).

    Article  CAS  Google Scholar 

  22. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer 40, 5967 (1999).

    Article  CAS  Google Scholar 

  23. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, Nature 423 (6941), 703 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, Nature 424 (6945), 171 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, ChemPhysChem. 2, 78 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. J. Gao, J. M. Sansiñena, and H. L. Wang, Chem. Mater. 15, 2411 (2003).

    Article  CAS  Google Scholar 

  27. P. R. Modaka, S. B. Kondawarb, and D. V. Nandanwarc, Int. J. Curr. Eng. Sci. Res. 6, 604 (2019).

    Google Scholar 

  28. S. H. S. Zein, L. C. Yeoh, S. P. Chai, A. R. Mohamed, and M. E. M. Mahayuddin, J. Mater. Process. Technol. 190, 402 (2007).

    Article  CAS  Google Scholar 

  29. S. B. Kondawar, M. D. Deshpande, and S. P. Agrawal, Int. J. Compos. Mater. 2 (3), 32 (2012).

    Google Scholar 

  30. S. Goswami, S. Nandy, J. Deuermeier, A. C. Marques, D. Nunes, S. P. Patole, P. M. F. J. Costa, R. Martins, and E. Fortunato, Adv. Sustainable Syst. 2 (1), 1870002 (2018).

  31. P. Paik, R. Manda, C. Amgoth, and K. S. Kumar, RSC Adv. 4, 12342 (2014).

    Article  CAS  Google Scholar 

  32. B. Dufour, P. Rannou, P. Fedorko, D. Djurado, J. P. Travers, and A. Pron, Chem. Mater. 13, 4032 (2001).

    Article  CAS  Google Scholar 

  33. T. M. Wu, and Y. W. Lin, Polymer 47, 3576 (2006).

    Article  CAS  Google Scholar 

  34. A. Imani, and G. Farzi, J. Mater. Sci.: Mater. Electron. 28, 10684 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundas Zafar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundas Zafar, Tasneem Zahra Rizvi Study of Structural, Thermal and Electrical Properties of Functionalized Multiwalled Carbon Nanotubes–Polyaniline Composites. Polym. Sci. Ser. B 64, 573–580 (2022). https://doi.org/10.1134/S1560090422700233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700233

Navigation