Skip to main content
Log in

Structural, Thermal and Electrochemical Behavior of Poly(2-ethylaniline)-nanocomposite-Fe2O3 and Poly(2-ethylaniline)-nanocomposite-SiO2 for Antibacterial and Antioxidant Studies

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Poly(2-ethylaniline) (PEAN), poly(2-ethylaniline)-nanocomposite-Fe2O3 (PEAN/Fe2O3) and poly(2-ethylaniline)-nanocomposite-SiO2 (PEAN/SiO2) are synthesized by emulsion polymerization and characterized by UV–Visible, FTIR spectroscopy, Powder XRD, TGA, DTA, and SEM-EDX. The nanocomposites are amorphous and exhibit a three-step thermal degradation corresponding to the loss of moisture, loss of dopant, and the decomposition of the polymer composites. The electrical conductivity of the semi-conducting emeraldine salt forms of PEAN, PEAN/Fe2O3 and PEAN/SiO2 doped with chloride ions and camphor sulphonate ions are 4.3 × 10–4, 3.6 × 10–5, and 4.8 × 10–3 S/cm respectively. PEAN, PEAN/Fe2O3 and PEAN/SiO2 show excellent antibacterial activity against the gram-positive bacteria Staphylococcus aureus, moderate activity against Salmonella typhi and Klebsiella pneumoniae, and weak activity against Bacillus subtilis and Enterococcus faecalis. These materials are inactive against Escherichia coli. The destruction of the bacterial cell membranes due to the stronger interaction between the doped polycation chains and the negatively charged bacterial cell wall, and the release of Fe3+ ions due to electrostatic interaction facilitates the binding to the negatively charged bacterial cell membrane. The large surface area and the high content of SiOH groups in nanoporous silica facilitates the attachment with the surface of the bacterial cell walls. The nanocomposites demonstrate relatively good free radical scavenging activity at a concentration of 50 µL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Jadoun, U. Riaz, and V. Budhiraja, Med. Devices Sens. 4 (1), e10141 (2020).

  2. R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh, Carbohydr. Polym. 88, 772 (2012).

    Article  CAS  Google Scholar 

  3. R. Balint, N. J. Cassidy and S. H. Cartmell, Acta Biomater. 10, 2341 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. H. Nam, T. An, and G. Lim, Nanoscale Res. Lett. 9, 566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. J. P. Saikia, S. Banerjee, B. K. Konwar, and A. Kumar, Colloids Surf., B 81, 158 (2010).

    Article  CAS  Google Scholar 

  6. M. R. Gizdavic-Nikolaidis, J. R. Bennett, S. Swift, A. J. Easteal, and M. Ambrose, Acta Biomater. 7, 4204 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. S. Sharma and D. Kumar, Indian J. Eng. Mater. Sci. 17, 231 (2010).

    CAS  Google Scholar 

  8. N. L. Shi, X. M. Guo, H. M. Jing, J. Gong, C. Sun, and K. Yang, J. Mater. Sci. Technol. 22, 289 (2006).

    CAS  Google Scholar 

  9. M. G. Nikolaidis, J. T Sejdic, G. A. Bowmaker, R. P. Cooney, C. Thompson, and P. A. Kilmartin, Curr. Appl. Phys. 4, 347 (2004).

    Article  Google Scholar 

  10. C. F. Hsu, H. Peng, C. Basle, J. Travas-Sejdic, and P. A. Kilmartin, Polym. Int. 60, 69 (2011).

    Article  CAS  Google Scholar 

  11. J. H. Holtz and S. A. Asher, Nature 389 (6653), 829 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. I. Willner, B. Willner, and E. Katz, Bioelectrochemistry 70, 2 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. E. Parthiban, N. Kalaivasan, and S. Sudarsan, Arabian J. Chem. 13, 4751 (2020).

    Article  CAS  Google Scholar 

  14. M. Kooti, P. Kharazi, and H. Motamedi, J. Taiwan Inst. Chem. Eng. 45, 2698 (2014).

    CAS  Google Scholar 

  15. S. Kant, S. Kalia, and A. Kumar, J. Alloys Compd. 578, 249 (2013).

    Article  CAS  Google Scholar 

  16. S. Sultana, Rafiuddin, M. Z. Khan, K. Umar, and M. Muneer, J. Mater. Sci. Technol. 29, 795 (2013).

    Article  CAS  Google Scholar 

  17. C. Sridhar, N. G. Yernale, and M. V. N. Ambika Prasad, Int. J. Chem. Eng. 2016, Article ID 3479248 (2016).

  18. X. Quan, J. Wang, T. Souleyman, W. Cai, S. Zhao, and Z. Wang, Prog. Org. Coat. 124, 61 (2018).

    Article  CAS  Google Scholar 

  19. M. N. Ahmad, M. N. Anjum, F. Nawaz, S. Iqbal, M. J. Saif, T. Hussain, A. Mujahid, M. U. Farooq, M. Nadeem, A. Rahman, A. Raza, and K. Shehzad, Polym. Compos. 39, 4524 (2017).

    Article  Google Scholar 

  20. W. Cai, J. Wang, X. Quan, and Z. Wang, J. Appl. Polym. Sci. 135, 45657 (2018).

    Article  Google Scholar 

  21. A. S. Al-Hussaini and W. Eldars, Des. Monomers Polym. 17, 458 (2014).

    Article  CAS  Google Scholar 

  22. J. Wang, L. H. Zhu, J. Li, and H. Q. Tang, Chin. Chem. Lett. 18, 1005 (2007).

    Article  CAS  Google Scholar 

  23. P. S. Jyoti, B. Somik, K. K. Bolin, and K. Ashok, Colloids Surf., B 81, 158 (2010).

    Article  Google Scholar 

  24. E. N. Zare and M. M. Lakouraj, Iran. Polym. J. 23, 257 (2014).

    Article  CAS  Google Scholar 

  25. A. L. Schemid, S. I. C. Torresi, A. N. Bassetto, and I. A. Carlos, J. Braz. Chem. Soc. 11, 317 (2000).

    Article  CAS  Google Scholar 

  26. P. I. P Soares, D. Machado, C. Laia, L. C. J Pereira, J. T. Coutinho, I. M. M. Ferreira, C. M. M. Novo, and J. P. Borges, Carbohydr. Polym. 149, 382 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. W. Qin, F. Vautard, P. Askeland, J. Yu, and L. T. Drzal, Polym. Compos. 38, 1474 (2015).

    Article  Google Scholar 

  28. P. Boomi, H. G. Prabu, and J. Mathiyarasu, Colloids Surf., B 103, 9 (2013).

    Article  CAS  Google Scholar 

  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C.R. Evans, Free Radicals Biol. Med. 26, 1231 (1999).

    Article  CAS  Google Scholar 

  30. S. Bilal, S. Gul, R. Holze, and A.H. Ali Shah, Synth. Met. 206, 131 (2015).

    Article  CAS  Google Scholar 

  31. M. G. Roe, J. M. Ginder, P. E. Wigeon, A. J. Epstein, M. Angelopoulos, and A. G. MacDiarmid, Phys. Rev. Lett. 60, 2789 (1999).

    Article  Google Scholar 

  32. A. Gruger, A. Novak, A. Regis, and P. Columban, J. Mol. Struct. 328, 153 (1994).

    Article  CAS  Google Scholar 

  33. J. Tang, X. Jing, B. Wang, and F. Wang, Synth. Met. 24, 231 (1988).

    Article  CAS  Google Scholar 

  34. A. M. Mazrouaa, M. G. Mohamed, and M. Fekry, Egypt. J. Pet. 28, 165 (2019).

    Google Scholar 

  35. J. R. Martinez, F. Ruiz, Y. V. Vorobiev, F. P. Robles, and J.G. Hernandez, J. Chem. Phys. 109, 7511 (1998).

    Article  CAS  Google Scholar 

  36. R. F. S. Lenza and W. L. Vasconcelos, Mater. Res. 5, 497 (2002).

    Article  Google Scholar 

  37. D. Anakli and S. Cetinkaya, Curr. Appl. Phys. 10, 401 (2010).

    Article  Google Scholar 

  38. P. Linganathan, J. Sundararajan, J. M. Samuel, J. Compos. 2014, Article ID 838975 (2014).

  39. N. M. Chola, S. Sreenath, B. Dave, and R. K. Nagarale, Electrophoresis 40, 2979 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. N. P. S. Chauhan, R. Ameta, R. Ameta, and S. C. Ameta, J. Indian Counc. Chem. 27, 128 (2010).

    CAS  Google Scholar 

  41. P. K. Prabhakar, S. Raj, P. R. Anuradha, S. N. Sawant, and M. Doble, Colloids Surf., B 86, 146 (2011).

    Article  CAS  Google Scholar 

  42. X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, and F. Xu, Dalton Trans. 41, 2804 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. A. N. Andriianova, L. R. Latypova, L. Y. Vasilova, S. V. Kiseleva, V. V. Zorin, I. B. Abdrakhmanov, and A. G. Mustaffin, J. Appl. Polym. Sci. 138, 51397 (2021).

    Article  CAS  Google Scholar 

  44. M. S. Alshammari, A. A. Essawy, A. M. El-Nggar, and S. M. Sayyah, J. Chem. 2020, Article ID 3297184 (2020).

  45. V. L. Prasanna and R. Vijayaraghavan, Langmuir 31, 9155 (2015).

    Article  Google Scholar 

  46. V. Stanic and S. B. Tanaskovic, in Nanotoxicity. Prevention and Antibacterial Applications of Nanomaterials, Ed. By S. Rajendran, A. Mukherjee, T. A. Nguyen, C. Godugu, and R. K. Shukla (Elsevier, Amsterdam, 2020), Chap. 11, pp. 241–274.

  47. K. Pandiselvi and S. Thambidurai, Mater. Sci. Semicond. Process. 31, 573 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jhancy Mary.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julia Sebastian, Jhancy Mary, S. Structural, Thermal and Electrochemical Behavior of Poly(2-ethylaniline)-nanocomposite-Fe2O3 and Poly(2-ethylaniline)-nanocomposite-SiO2 for Antibacterial and Antioxidant Studies. Polym. Sci. Ser. B 64, 340–353 (2022). https://doi.org/10.1134/S1560090422200040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422200040

Navigation