Skip to main content
Log in

Determination of Elemental Composition of Soils Collected near Waste Incineration Plants in Moscow Using Neutron Activation Analysis

  • NEUTRON PHYSICS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The incineration of municipal solid waste is an important source of environmental pollution with heavy metals. In present study the elemental composition of soil samples collected near two main waste incinerators in Moscow was determined. The content of 38 elements (Mg, Al, Si, Ca, Ti, V, Mn, Dy, Fe, K, Na, Sc, Cr, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Hf, Ta, W, Au, Th, and U) was determined using neutron activation analysis. To assess the level of soil pollution, the values of the geoaccumulation index, contamination factor and pollution load index were calculated. The contaminated factor values indicate slight soil contamination with Zn, As, Br, Sb, Hf, Hg, and W and moderate soil contamination with Sb. Pollution load index values above 1.0 indicate moderate pollution of the studied soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. C. Boudet, D. Zmirou, M. Laffond, et al., “Health risk assessment of a modern municipal waste incinerator,” Risk Anal. 19, 1215–1222 (1999). https://doi.org/10.1023/A:1007099031580

    Article  CAS  PubMed  Google Scholar 

  2. National Research Council, Incineration Processes and Environmental Releases, Waste Incineration and Public Health (The National Academies Press, Washington, DC, 2000).

    Google Scholar 

  3. C. Snary, “Health risk assessment for planned waste incinerators: getting the right science and the science right,” Risk Anal. 22, 1095–1105 (2002). https://doi.org/10.1111/1539-6924.00275

    Article  PubMed  Google Scholar 

  4. T. Gu, C. Yin, W. Ma and G. Chen. “Municipal solid waste incineration in a packed bed: a comprehensive modeling study with experimental validation,” Appl. Energy 247, 127–139 (2019).

    Article  ADS  CAS  Google Scholar 

  5. K. M. N. Islam, “Municipal solid waste to energy generation: an approach for enhancing climate co-benefits in the urban areas of Bangladesh,” Renewable Sustainable Energy Rev. 81, 2472–2486 (2018).

    Article  Google Scholar 

  6. J. L. Domingo, “Human health risks of dioxins for populations living near modern municipal solid waste incinerators,” Rev. Environ. Health 17, 135–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. R. M. Sedman, J. M. Polisini and J. R. Esparza. “The evaluation of stack metal emissions from hazardous waste incinerators: assessing human exposure through noninhalation pathways,” Environ. Health Perspect. 102, 105–112 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Meng et al., “PCDD/Fs in soil and air and their possible sources in the vicinity of municipal solid waste incinerators in northeastern China,” Atmos. Pollut. Res. 7, 355–362 (2016).

    Article  Google Scholar 

  9. T. Zhipeng, et al., “The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration,” Process Saf. Environ. Prot. 98, 333–341(2015).

    Article  Google Scholar 

  10. Russian Statistical Yearbook (Rosstat). https://rosstat.gov.ru/storage/mediabank/Ejegodnik_2021.pdf (Accessed 2021).

  11. V. V. Aleksashina, “The ecology of the city. Waste incineration plants,” Academia. Architect. Construct. 4, 77–86 (2014).

    Google Scholar 

  12. GOST 17.4.4.02–84 Nature Protection. Soils. Methods for Sampling and Preparation of Soils for Chemical, Bacteriological, Helminthological Analysis (Standardinform, Moscow). https://files.stroyinf.ru/Data2/1/4294847/ 4294847763.htm. (Accessed 2008).

  13. S. S. Pavlov, A. Yu. Dmitriev and M. V. Frontasyeva, “Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,” J. Radioanal. Nucl. Chem. 309, 27–38 (2016). https://doi.org/10.1007/s10967-016-4864-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. REGATA.http://flnph.jinr.ru/en/facilities/ibr-2/instruments/regata. (Accessed October 13, 2020).

  15. G. Müller, “The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking,” Chem. Z. 105, 157–164 (1981).

    Google Scholar 

  16. L. Hakanson, “An ecological risk index for aquatic pollution control. A sediment ecological approach,” Water Res. 14, 975–1001 (1980).

    Article  Google Scholar 

  17. D. L. Tomlinson, J. G. Wilson, C. R. Harris and D. W. Jeffrey, “Problem in the assessment of heavy metals levels in estuaries and the formation of a pollution index,” Helgoländer Meeresunters. 33, 566–575 (1980).

    Article  Google Scholar 

  18. K. H. Wedepohl, “The composition of the continental crust,” Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Article  ADS  CAS  Google Scholar 

  19. J. A. Fernández and A. Carballeira, “Evaluation of contamination, by different elements, in terrestrial mosses,” Arch. Environ. Contam. Toxicol. 40, 461–468 (2001).

    Article  PubMed  Google Scholar 

  20. Hygienic Normative Concerning the Maximum Permitted Concentrations of Chemical Compounds in Soil (Rospotrebnadzor, Moscow). https://files.stroyinf.ru/Data2/1/4293850/4293850511.pdf. (Accessed 2006).

  21. M. S. Shvetsova, I. Z. Kamanina, A. I. Madadzada, et al., “Determination of trace elements (Cu, Sb, Pb, V, Zn) in the territory of recreation zones of Moscow using the “moss bags” technique,” Adv. Curr. Nat. Sci. 8, 74–82 (2020).

    Google Scholar 

  22. Y. Li, H. Zhang, L. Shao, X. Zhou, and P. He, “Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis,” Res. J. Environ. Sci. 82, 47–56 (2019).

    CAS  Google Scholar 

  23. F. C. Bretzel and M. Calderisi, “Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil,” Environ. Monit. Assess. 182, 523–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. M. Nadal, A. Bocio, M. Schuhmacher, et al., “Trends in the levels of metals in soils and vegetation samples collected near a hazardous waste incinerator,” Arch. Environ. Contam. Toxicol. 49, 290–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. F. Paoletti, P. Sirini, H. Seifert, and J. Vehlow, “Fate of antimony in municipal solid waste incineration,” Chemosphere 42, 533–543 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zinicovscaia.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turdiev, S., Zinicovscaia, I., Vergel, K. et al. Determination of Elemental Composition of Soils Collected near Waste Incineration Plants in Moscow Using Neutron Activation Analysis. Phys. Part. Nuclei Lett. 21, 73–78 (2024). https://doi.org/10.1134/S1547477124010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477124010126

Keywords:

Navigation