Skip to main content
Log in

Quantum Magnetic Properties, Entanglement for Antiferromagnetic Spin 1 and 3/2 Cluster Models

  • PHYSICS OF SOLID STATE AND CONDENSED MATTER
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Entanglement, magnetization, and magnetic susceptibility for 1D antiferromagnetic spin \(1\) and spin \(\frac{3}{2}\) Heisenberg \(XXX\) model with Dzyaloshinskii–Moriya interaction, single-ion anisotropy, and external magnetic field on the finite chain are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Nagamiya, K. Yosida, and R. Kubo, “Antiferromagnetism,” Adv. Phys. 4, 1–122 (1955). https://doi.org/10.1080/00018735500101154

    Article  ADS  Google Scholar 

  2. I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Rev. Mod. Phys. 86, 153 (2014). https://doi.org/10.1103/RevModPhys.86.153

    Article  ADS  Google Scholar 

  3. S. S. Tandon, S. D. Bunge, N. Patel, E. C. Wang, and L. K. Thompson, “Self-assembly of antiferromagnetically-coupled copper (II) supramolecular architectures with diverse structural complexities,” Molecules 25, 5549 (2020). https://doi.org/10.3390/molecules25235549

    Article  Google Scholar 

  4. N. M.Bonanno, A. J. Lough, and M. T. Lemaire, “Atrinuclear nickel(II) cluster containing a ditopic redox active ligand: Structural and magnetic properties,” Polyhedron 183, 114536 (2020). https://doi.org/10.1016/j.poly.2020.114536

    Article  Google Scholar 

  5. J. F. Berry, F. A. Cotton, C. Y. Liu, T. Lu, C. A. Murillo, B. S. Tsukerblat, D. Villagran, and X. Wang, “Modeling spin interactions in a cyclic trimer and a cuboidal Co4O4 core with Co(II) in tetrahedral and octahedral environments,” Am. Chem. Soc. 127, 4895–4902 (2005). https://doi.org/10.1021/ja044185bJ

    Article  Google Scholar 

  6. H. Arian Zad, R. Kenna, and N. Ananikian, “Magnetic and thermodynamic properties of the octanuclear nickel phosphonate-based cage,” Physica A 538, 122841 (2020). https://doi.org/10.1016/j.physa.2019.122841

    Article  Google Scholar 

  7. F. Benabdallah, S. Haddadi, H. A. Zad, M. R. Pourkarimi, M. Daoud, and N. Ananikian, “Pairwise quantum criteria and teleportation in a spin square complex,” Sci. Rep. 12, 1–12 (2022). https://doi.org/10.1038/s41598-022-10248-2

    Article  Google Scholar 

  8. M. Wieniak, V. Vedral, and C. Brukner, “Magnetic susceptibility as a macroscopic entanglement witness,” New J. Phys. 7, 258 (2005). https://doi.org/10.1088/1367-2630/7/1/258

    Article  ADS  Google Scholar 

  9. G. Vidal and R. F. Werner, “A computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    Article  ADS  Google Scholar 

Download references

Funding

N. A. acknowledges the receipt of the grant No. SCS 21AG-1C006 and No. SCS 23SC-CNR-1C006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Ananikian or Vl. V. Papoyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananikian, N., Papoyan, V.V. Quantum Magnetic Properties, Entanglement for Antiferromagnetic Spin 1 and 3/2 Cluster Models. Phys. Part. Nuclei Lett. 20, 1073–1077 (2023). https://doi.org/10.1134/S1547477123050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050060

Navigation