Skip to main content
Log in

\(Q\bar {Q}\) \((Q \in \{ b,c\} )\) Spectroscopy Using the Modified Rovibrational Model

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Mass spectra of quarkonium systems can be described by different phenomenological potentials. In the present work, we explored theoretical analysis methods for energy spectra of diatomic molecules and heavy mesons, the resonance states (\(c\bar {c}\) and \(b\bar {b}\)) of heavy quarkonium were considered the rovibrational states. A parameterized rovibrational model was derived from the empirical solution of the nonrelativistic Schrödinger equation with Morse potential. The corrections were composed of color hyperfine interaction and spin-orbit interaction of mesons. The high excited state mass spectra of charmonium and bottomonium were obtained after comparing the results with the present experimental data in a fair manner. Our calculations show that the modified rovibrational model can be used in the meson system of quark and anti-quark, thereby proving to be useful for the interpretation of excited hadron spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J.-J. Aubert, U. Becker, P. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. Rhoades, et al., Phys. Rev. Lett. 33, 1404 (1974).

    Article  ADS  Google Scholar 

  2. S. Herb, D. Hom, L. Lederman, J. Sens, H. Snyder, J. Yoh, J. Appel, B. Brown, C. Brown, W. R. Innes, et al., Phys. Rev. Lett. 39, 252 (1977).

    Article  ADS  Google Scholar 

  3. W. R. Innes, J. Appel, B. Brown, C. Brown, K. Ueno, T. Yamanouchi, S. Herb, D. Hom, L. Lederman, J. Sens, et al., Phys. Rev. Lett. 39, 1240 (1977).

    Article  ADS  Google Scholar 

  4. V. Kher and A. K. Rai, Chin. Phys. C 42, 083101 (2018).

    Article  ADS  Google Scholar 

  5. S. Godfrey and S. L. Olsen, arXiv:0801.3867 (2008).

  6. S.-K. Choi, S. Olsen, K. Abe, T. Abe, I. Adachi, B. S. Ahn, H. Aihara, K. Akai, M. Akatsu, M. Akemoto, et al., Phys. Rev. Lett. 91, 262001 (2003).

    Article  ADS  Google Scholar 

  7. V. Kumar, R. M. Singh, S. Bhardwaj, R. Rani, and F. Chand, Mod. Phys. Lett. A 37, 2250010 (2022).

    Article  ADS  Google Scholar 

  8. C. S. Fischer, S. Kubrak, and R. Williams, Eur. Phys. J. A 51, 1 (2015).

    Article  ADS  Google Scholar 

  9. O. Lakhina and E. S. Swanson, Phys. Rev. D 74, 014012 (2006).

    Article  ADS  Google Scholar 

  10. S. F. Radford and W. W. Repko, Phys. Rev. D 75, 074031 (2007).

    Article  ADS  Google Scholar 

  11. N. Soni, B. Joshi, R. Shah, H. Chauhan, and J. Pandya, Eur. Phys. J. C 78, 1 (2018).

    Article  Google Scholar 

  12. D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9

    Article  ADS  Google Scholar 

  13. W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, Phys. Rev. D 95, 034026 (2017).

    Article  ADS  Google Scholar 

  14. B.-Q. Li and K.-T. Chao, Phys. Rev. D 79, 094004 (2009).

    Article  ADS  Google Scholar 

  15. M. Shah, A. Parmar, and P. C. Vinodkumar, Phys. Rev. D 86, 034015 (2012).

    Article  ADS  Google Scholar 

  16. L. Bai-Qing and C. Kuang-Ta, Comm. Theor. Phys. 52, 653 (2009).

    Article  ADS  Google Scholar 

  17. T. Barnes, S. Godfrey, and E. Swanson, Phys. Rev. D 72, 054026 (2005).

    Article  ADS  Google Scholar 

  18. J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Phys. Rev. D 99, 114003 (2019).

    Article  ADS  Google Scholar 

  19. J.-Z. Wang, Z.-F. Sun, X. Liu, and T. Matsuki, Eur. Phys. J. C 78, 1 (2018).

    Article  Google Scholar 

  20. D. Ebert, R. Faustov, and V. Galkin, Phys. At. Nucl. 76, 1554 (2013).

    Article  Google Scholar 

  21. J.-K. Chen, Eur. Phys. J. C 78, 1 (2018).

    Article  Google Scholar 

  22. J.-K. Chen, Eur. Phys. J. A 57, 1 (2021).

    Article  ADS  Google Scholar 

  23. M. Albaladejo, L. Bibrzycki, S. M. Dawid, C. Fernandez-Ramirez, S. Gonzalez-Solis, A. N. H. Blin, A. W. Jackura, V. Mathieu, M. Mikhasenko, V. I. Mokeev, et al., arXiv:2112.13436 (2021).

  24. L. Pauling, Proc. Nat. Acad. Sci. USA 56, 1676 (1966).

    Article  ADS  Google Scholar 

  25. D. L. Bernardo, C. C. Bastos, and A. C. Pavão, Chin. Phys. C 45, 084104 (2021).

    Article  ADS  Google Scholar 

  26. P. M. Morse, Phys. Rev. 34, 57 (1929).

    Article  ADS  Google Scholar 

  27. I. B. Okon, O. Popoola, and C. N. Isonguyo, Adv. High Energy Phys. 2017, 9671816 (2017).

    Article  Google Scholar 

  28. H. Mansour and A. Gamal, Results in Phys. 33, 105203 (2022).

    Article  Google Scholar 

  29. C. Pekeris, Phys. Rev. 45, 98 (1934).

    Article  ADS  Google Scholar 

  30. S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  Google Scholar 

  31. T. Das, arXiv:1408.6139 (2014).

  32. P. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  33. M. Shah, A. Parmar, and P. Vinodkumar, Phys. Rev. D 86, 034015 (2012).

    Article  ADS  Google Scholar 

  34. S. Patel, P. C. Vinodkumar, and S. Bhatnagar, Chin. Phys. C 40, 053102 (2016).

    Article  Google Scholar 

  35. S. Godfrey and K. Moats, Phys. Rev. D 92, 054034 (2015).

    Article  ADS  Google Scholar 

  36. J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernández, Phys. Rev. D 93, 074027 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grants no. 11965016 and no. 12247101, the projects funded by Science and Technology Department of Qinghai Province (no. 2020-ZJ-728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Qun Pang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng-Yuan Fang, Wang, YR. & Pang, CQ. \(Q\bar {Q}\) \((Q \in \{ b,c\} )\) Spectroscopy Using the Modified Rovibrational Model. Phys. Part. Nuclei Lett. 20, 589–597 (2023). https://doi.org/10.1134/S1547477123040714

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123040714

Navigation