Skip to main content
Log in

The \(\varLambda (1405)\) resonance as a genuine three-quark or molecular state

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The mechanism for the formation of the \(\varLambda (1405)\) resonance is studied in a chiral quark model that includes quark-meson as well as contact (four point) interactions. The negative-parity S-wave scattering amplitudes for strangeness \(-1\) and 1 are calculated within a unified coupled-channel framework that includes the KN, \(\bar{K}N\), \(\pi \varSigma \), \(\eta \varLambda \), \(K\varXi \), \(\pi \varLambda \), and \(\eta \varSigma \) channels and possible genuine three-quark bare singlet and octet states corresponding to \(\frac{1}{2}^-\) resonances. It is found that in order to reproduce the scattering amplitudes in the \(S_{01}\) partial wave it is important to include the pertinent three-quark octet states as well as the singlet state, while the inclusion of the contact term is not mandatory. The Laurent-Pietarinen expansion is used to determine the S-matrix poles. Following their evolution as a function of increasing interaction strength, the mass of the singlet state is strongly reduced due to the attractive self-energy in the \(\pi \varSigma \) and \(\bar{K}N\) channels; when it drops below the KN threshold, the state acquires a dominant \(\bar{K}N\) component which can be identified with a molecular state. The attraction between the kaon and the nucleon is generated through the \(\bar{K}N\varLambda ^*\) interaction rather than by meson-nucleon forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Notes

  1. In our previous calculations we have included only one or two quasi-bound quark states; in the present work we allow for more quark states.

References

  1. M.H. Alston et al., Phys. Rev. Lett. 6, 698 (1961)

    Article  ADS  Google Scholar 

  2. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    Article  ADS  Google Scholar 

  3. J.W. Darewych, R. Koniuk, N. Isgur, Phys. Rev. D 32, 1765 (1985)

    Article  ADS  Google Scholar 

  4. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    Article  ADS  Google Scholar 

  5. U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 447 (2001)

    Article  ADS  Google Scholar 

  6. T. Melde, W. Plessas, B. Sengl, Phys. Rev. D 77, 114002 (2008)

    Article  ADS  Google Scholar 

  7. M. Arima, S. Matsui, K. Shimizu, Phys. Rev. C 49, 2831 (1994)

    Article  ADS  Google Scholar 

  8. R.H. Dalitz, S.F. Tuan, Ann. Phys. 10, 307 (1960)

    Article  ADS  Google Scholar 

  9. R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

    Article  ADS  Google Scholar 

  10. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995)

    Article  ADS  Google Scholar 

  11. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998)

    Article  ADS  Google Scholar 

  12. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002)

    Article  ADS  Google Scholar 

  13. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263 (2001)

    Article  ADS  Google Scholar 

  14. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181 (2003)

    Article  ADS  Google Scholar 

  15. T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C 68, 018201 (2003)

    Article  ADS  Google Scholar 

  16. C. Garcia-Recio, J. Nieves, E.R. Arriola, M.J. Vicente Vacas, Phys. Rev. D 67, 076009 (2003)

    Article  ADS  Google Scholar 

  17. T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

    Article  ADS  Google Scholar 

  18. Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011)

    Article  ADS  Google Scholar 

  19. Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881, 98 (2012)

    Article  ADS  Google Scholar 

  20. Z.-H. Guo, J.A. Oller, Phys. Rev. C 87, 035202 (2013)

    Article  ADS  Google Scholar 

  21. L. Roca, E. Oset, Eur. Phys. J. A 56, 56 (2020)

    Article  Google Scholar 

  22. M. Mai, U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015)

    Article  ADS  Google Scholar 

  23. K.S. Myint, Y. Akaishi, M. Hassanvand, T. Yamazaki, Prog. Theor. Exp. Phys. 2018, 073D01 (2018)

    Article  Google Scholar 

  24. A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984)

    Google Scholar 

  25. E.A. Veit, B.K. Jennings, R.C. Barrett, A.W. Thomas, Phys. Lett. B 137, 415 (1984)

    Article  ADS  Google Scholar 

  26. E.A. Veit, B.K. Jennings, A.W. Thomas, R.C. Barrett, Phys. Rev. D 31, 1033 (1985)

    Article  ADS  Google Scholar 

  27. B.K. Jennings, Phys. Lett. B 178, 229 (1986)

    Article  ADS  Google Scholar 

  28. E.A. Veit, A.W. Thomas, B.K. Jennings, Phys. Rev. D 31, 2242 (1985)

    Article  ADS  Google Scholar 

  29. B.J. Menadue, W. Kamleh, D.B. Leinweber, M.S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

    Article  ADS  Google Scholar 

  30. J.M.M. Hall, W. Kamleh, D.B. Leinweber, B.J. Menadue, B.J. Owen, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 114, 132002 (2015)

    Article  ADS  Google Scholar 

  31. Z.-W. Liu, J.M.M. Hall, D.B. Leinweber, A.W. Thomas, J.-J. Wu, Phys. Rev. D 95, 014506 (2017)

    Article  ADS  Google Scholar 

  32. G.P. Engel, C.B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)

    Article  ADS  Google Scholar 

  33. P. Gubler, T.T. Takahashi, M. Oka, Phys. Rev. D 94, 114518 (2016)

    Article  ADS  Google Scholar 

  34. R. Pavao, P. Gubler, P. Fernandez-Soler, J. Nieves, M. Oka, T.T. Takahashi, Phys. Lett. B 829, 136473 (2021)

    Article  Google Scholar 

  35. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035204 (2013)

    Article  ADS  Google Scholar 

  36. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035205 (2013)

    Article  ADS  Google Scholar 

  37. H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. C 90, 065204 (2014)

    Article  ADS  Google Scholar 

  38. M. Matveev, A.V. Sarantsev, V.A. Nikonov, A.V. Anisovich, U. Thoma, E. Klempt, Eur. Phys. J. A 55, 179 (2019)

    Article  ADS  Google Scholar 

  39. A.V. Sarantsev, M. Matveev, V.A. Nikonov, A.V. Anisovich, U. Thoma, E. Klempt, Eur. Phys. J. A 55, 180 (2019)

    Article  ADS  Google Scholar 

  40. H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. C 92, 025205 (2015)

    Article  ADS  Google Scholar 

  41. A.V. Anisovich, A.V. Sarantsev, V.A. Nikonov, V. Burkert, R.A. Schumacher, U. Thoma, E. Klempt, Eur. Phys. J. A 56, 139 (2020)

    Article  ADS  Google Scholar 

  42. C. Fernandez-Ramirez, I.V. Danilkin, V. Mathieu, A.P. Szczepaniak, Phys. Rev. D 93, 074015 (2016)

    Article  ADS  Google Scholar 

  43. E. Klempt, V. Burkert, U. Thoma, L. Tiator, R. Workman, Eur. Phys. J. A 56, 261 (2020)

    Article  ADS  Google Scholar 

  44. B. Golli, H. Osmanović, S. Širca, A. Švarc, Phys. Rev. C 97, 035204 (2018)

    Article  ADS  Google Scholar 

  45. B. Golli, H. Osmanović, S. Širca, Phys. Rev. C 100, 035204 (2019)

    Article  ADS  Google Scholar 

  46. B. Golli, S. Širca, Eur. Phys. J. A 38, 271 (2008)

    Article  ADS  Google Scholar 

  47. B. Golli, S. Širca, M. Fiolhais, Eur. Phys. J. A 42, 185 (2009)

    Article  ADS  Google Scholar 

  48. B. Golli, S. Širca, Eur. Phys. J. A 47, 61 (2011)

    Article  ADS  Google Scholar 

  49. B. Golli, S. Širca, Eur. Phys. J. A 49, 111 (2013)

    Article  ADS  Google Scholar 

  50. B. Golli, S. Širca, Eur. Phys. J. A 52, 279 (2016)

    Article  ADS  Google Scholar 

  51. (2022) https://gwdac.phys.gwu.edu/analysis/kn_analysis.html

  52. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, R.L. Workman, Phys. Rev. C 88, 035206 (2013)

    Article  ADS  Google Scholar 

  53. A. Švarc, M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov, Phys. Rev. C 89, 045205 (2014)

    Article  ADS  Google Scholar 

  54. A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, R.L. Workman, Phys. Rev. C 91, 015207 (2015)

    Article  ADS  Google Scholar 

  55. P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  56. R.J. Hemingway, Nucl. Phys. B 253, 742 (1985)

    Article  ADS  Google Scholar 

  57. A. Starostin et al., Crystal Ball Collaboration. Phys. Rev. C 64, 055205 (2001)

  58. M. Döring, U.-G. Meissner, Phys. Lett. B 704, 663 (2011)

    Article  ADS  Google Scholar 

  59. M. Bazzi et al., SIDDHARTA Collaboration. Nucl. Phys. A 881, 88 (2012)

  60. P.J. Fink, G. He, R.H. Landau, J.W. Schnick, Phys. Rev. C 41, 2720 (1990)

    Article  ADS  Google Scholar 

  61. G. Agakishiev et al., (HADES Collaboration) Phys. Rev. C 87, 025201 (2013)

  62. K. Moriya et al., CLAS Collaboration. Phys. Rev. C 87, 035206 (2013)

  63. M. Bayar, R. Pavao, S. Sakai, E. Oset, Phys. Rev. C 97, 035203 (2018)

    Article  ADS  Google Scholar 

  64. M. Hassanvand, S.Z. Kalantari, Y. Akaishi, T. Yamazaki, Phys. Rev. C 87, 055202 (2013)

    Article  ADS  Google Scholar 

  65. S. Marri, M.N. Nasrabadi, S.Z. Kalantari, Phys. Rev. C 103, 055204 (2021)

    Article  ADS  Google Scholar 

  66. W. Broniowski, B. Golli, G. Ripka, Nucl. Phys. A 703, 667 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Golli.

Additional information

Communicated by Che-Ming Ko.

Appendices

The Cloudy Bag Model meson-quark vertices and coupling constants

The s-wave quark-meson vertices \(\hat{V}(k)\) in Eq. (11) are evaluated in the Cloudy Bag Model assuming that in the resonant state one of the three quarks is excited from the 1s state to the \(1p_{1/2}\) state.

Table 4 Reduced \(X^*\rightarrow MB\) matrix elements
Table 5 Reduced \(B\rightarrow MX^*\) matrix elements
Table 6 Reduced \(B\rightarrow MS^*\) matrix elements for non-strange s-wave resonances
Table 7 \(g_{\alpha \beta }\) for isospin 0 and 1

For the quark part of the quark-pion, quark-eta meson and quark-kaon interaction we obtain

$$\begin{aligned}&\hat{V}^\pi _{l=0,t}(k) = V^\pi (k)\sum _{i=1}^3 \tau _t(i)\, \mathcal {P}_{sp}(i)\,, \end{aligned}$$
(19)
$$\begin{aligned}&\hat{V}^\eta (k) =V^\eta (k) \sum _{i=1}^3 \lambda _8(i)\,\mathcal {P}_{sp}(i)\,, \end{aligned}$$
(20)
$$\begin{aligned}&\hat{V}^K_{t}(k) = V^K(k) \end{aligned}$$
(21)

Here \(\mathcal {P}_{sp} =\sum _{m_j}|sm_j\rangle \langle p_{1/2}m_j|\), \(\omega _s=2.043\), \(\omega _{p_{1/2}}=3.811\), \(X(K^0)= -(\lambda _6- i\lambda _7)/\sqrt{2}\), \(X(\bar{K}^0)= -(\lambda _6+i\lambda _7)/\sqrt{2}\), \(X(K^+)= -(\lambda _4- i\lambda _5)/\sqrt{2}\), \(X(K^-)= (\lambda _4+ i\lambda _5)/\sqrt{2}\). Assuming \(f_\eta =f_K=f_\pi \), the form-factors of the surface part and of the volume part take the form

$$\begin{aligned} V^\pi _S(k)= & {} V^\eta _S(k) = V^K_S(k) \nonumber \\= & {} {1\over 2f_\pi }\sqrt{\omega _{p_{1/2}}\omega _s\over (\omega _{p_{1/2}}+1)(\omega _s-1)}\, {1\over 2\pi }\,{k^2\over \sqrt{\omega _k}}\,{j_0(kR)\over kR}\,, \nonumber \\ V_V(k)= & {} \left[ {\omega _s\over R} - {\omega _{p1/2}\over R} + \omega _M(k)\right] \nonumber \\\times & {} \int _0^R dr \,r^2[u_s(r)u_p(r)+v_s(r)v_p(r)]j_0(kr)\,. \end{aligned}$$
(22)

For the physical \(\eta \) we assume \(\eta = \cos \theta _P\eta _8-\sin \theta _P\eta _1 \), for the singlet \(\eta _1\) \(\lambda _8\) is replaced by \(\lambda _1\) in Eq. (20).

The coupling constants for the s-channel exchange potential are collected in Table 4, those for the u-channel exchange potential involving strange baryons in Table 5, and for exchange of nonstrange baryons in Table 6.

Contact interaction

For the s-wave mesons the contact interaction can be cast in the form

$$\begin{aligned} V^c_{\alpha \beta }(k,k')= & {} {g_{\alpha \beta }\over 2f^2_\pi } {kk'\over 2\pi ^2\sqrt{2\omega _\alpha (k)}\sqrt{2\omega _\beta (k')}} \nonumber \\&\times [\omega _\alpha (k) + \omega _\beta (k')] \nonumber \\&\quad \int _0^R dr \,r^2[u_s^2(r) + v_s^2(r)]j_0(kr)j_0(k'r)\,.\nonumber \\ \end{aligned}$$
(23)

Here \(g_{\alpha \beta }\) can be identified with \(-2f_\pi ^2\lambda ^I_{\alpha \beta }\) of [26] and \({\textstyle {\frac{1}{2}}}\mathcal {D}_{\alpha \beta }\) of [11] and are collected in Table 7.

Oset [11] has an opposite sign for \(\bar{K}N\leftrightarrow \pi \varSigma \), which is compensated by changing the sign for \(\varSigma ^*\rightarrow \pi \varSigma \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golli, B., Osmanović, H. & Širca, S. The \(\varLambda (1405)\) resonance as a genuine three-quark or molecular state. Eur. Phys. J. A 58, 116 (2022). https://doi.org/10.1140/epja/s10050-022-00767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00767-x

Navigation