Skip to main content
Log in

Supersymmetrization of the 3-Particle Elliptic Calogero Model

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

\(\mathcal{N}\) = 2 and \(\mathcal{N}\) = 4 supersymmetric generalizations of the 3-particle elliptic Calogero system are proposed. Supersymmetry generators of the system are found in which the center of mass sector is described by the supermultiplet \(({\mathbf{1}},\mathcal{N},\mathcal{N} - {\mathbf{1}})\), while the sector of relative coordinates is the supermultiplet \(({\mathbf{2}},\mathcal{N},\mathcal{N} - {\mathbf{2}})\). The \(\mathcal{N}\) = 2 model with three supermultiplets \(({\mathbf{1}},{\mathbf{2}},{\mathbf{1}})\) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The 2-particle Calogero system reduces to separated one-dimensional subsystems of the center of mass and relative motion, and supersymmetrization of each of them does not cause difficulties.

  2. For brevity, the \({{q}_{a}} - {{q}_{b}}\) variables will be called below relative or difference coordinates, and the dynamic sector described by such coordinates will be called the relative sector of the system.

  3. The application of the system obtained in [14] to describe the \(\mathcal{N}\) = 2 elliptic Calogero system was not discussed, although this is possible within the framework of the approach considered there.

REFERENCES

  1. F. Calogero, “Ground state of one-dimensional N body system,” J. Math. Phys. 10, 2197 (1969);

    Article  ADS  Google Scholar 

  2. F. Calogero, “Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials,” J. Math. Phys. 12, 419 (1971);

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Calogero, “Exactly solvable one-dimensional many body problems,” Lett. Nuovo Cimento 13, 411 (1975).

    Article  MathSciNet  Google Scholar 

  4. M. A. Olshanetsky and A. M. Perelomov, “Classical integrable finite dimensional systems related to Lie algebras,” Phys. Rep. 71, 313 (1981);

    Article  ADS  MathSciNet  Google Scholar 

  5. M. A. Olshanetsky and A. M. Perelomov, “Quantum integrable systems related to Lie algebras,” Phys. Rep. 94, 313 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. P. Polychronakos, “Physics and mathematics of Calogero particles,” J. Phys. A 12793, 39 (2006).

    MathSciNet  MATH  Google Scholar 

  7. G. Arutyunov, Elements of Classical and Quantum Integrable Systems (Springer Nature Switzerland, 2019).

    Book  MATH  Google Scholar 

  8. D. Z. Freedman and P. F. Mende, “An exactly solvable N-particle system in supersymmetric quantum mechanics,” Nucl. Phys. B 344, 317 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Wyllard, “(Super)Conformal many body quantum mechanics with extended supersymmetry,” J. Math. Phys. 41, 2826 (2000). arXiv:hep-th/9910160.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Bellucci, A. Galajinsky, and S. Krivonos, “New many-body superconformal models as reductions of simple composite systems,” Phys. Rev. D 68, 064010 (2003). arXiv:hep-th/0304087.

    Article  ADS  Google Scholar 

  11. A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, “N = 4 Mechanics, WDVV equations and roots,” J. High Energy Phys. 0903, 113 (2009). arXiv: 0802.4386[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Supersymmetric Calogero models by gauging,” Phys. Rev. D 79, 105015 (2009). arXiv:0812.4276 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal mechanics,” J. Phys. A 45, 173001 (2012). arXiv:1112.1947 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Supersymmetric hyperbolic Calogero-Sutherland Models by gauging,” Nucl. Phys. B 944, 114633 (2019). arXiv: 1902.08023 [hep-th].

  15. S. Krivonos, O. Lechtenfeld, A. Provorov, and A. Sutulin, “Extended supersymmetric Calogero model,” Phys. Lett 791, 385 (2019). arXiv:1812.10168 [hep-th].

  16. S. Fedoruk, “N = 2 supersymmetric hyperbolic Calogero-Sutherland model,” Nucl. Phys. B 953, 114977 (2020). arXiv:1910.07348 [hep-th].

  17. S. Krivonos, O. Lechtenfeld, and A. Sutulin, “New N = 2 superspace Calogero models,” J. High Energy Phys. 05, 132 (2020). arXiv:1912.05989 [hep-th].

  18. S. Krivonos and O. Lechtenfeld, “N = 4 supersymmetric Calogero-Sutherland models,” Phys. Rev. D 101, 086010 (2020). arXiv:2002.03929 [hep-th].

  19. S. Fedoruk, “N = 4 supersymmetric U(2)-spin hyperbolic Calogero-Sutherland model,” Nucl. Phys. B 961, 115234 (2020) arXiv:2007.11424 [hep-th].

  20. H. Bateman and A. Erdelyi, Higher Transcedental Functions, Vol. 3 (McGraw-Hill, New York, 1955; Nauka, Moscow, 1965).

Download references

ACKNOWLEDGMENTS

I would like to thank Evgeny Ivanov and Sergey Krivonos for useful discussions and comments.

Funding

This work was supported by the Russian Science Foundation grant no. 21-12-00129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Fedoruk.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoruk, S.A. Supersymmetrization of the 3-Particle Elliptic Calogero Model. Phys. Part. Nuclei Lett. 20, 560–564 (2023). https://doi.org/10.1134/S154747712304026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747712304026X

Keywords:

Navigation