Skip to main content
Log in

Mathematical Model of a Radiation-Induced Neurogenesis Impairment

  • RADIOBIOLOGY, ECOLOGY AND NUCLEAR MEDICINE
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Models of radiation-induced neurogenesis disorders are based on a consideration of the age-related dynamics of the changes in the number of progenitor cells during life. However, for a full-fledged analysis of radiation injuries, it is also necessary to know the age-related dynamics of mature cell types—neurons, astrocytes, and oligodendrocytes formed from the corresponding progenitor cells. To account for the population of both progenitor cells and mature cell types, we have developed a mathematical model of the radiation-induced impairment of adult neurogenesis based on a model of asymmetric division of neural stem cells in the dentate gyrus of the hippocampus of C57BL mice. This model reproduces experimental data on age-related changes in the number of neural stem cells; amplifying neuronal progenitors; neuroblasts; immature neurons; and, for the first time, mature neurons and astrocytes. The dynamics of changes in the number of oligodendrocytes with age is predicted. The proportions of surviving mature neurons, astrocytes, and oligodendrocytes after exposure to X-ray radiation have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. L. Monje and T. Palmer, “Radiation injury and neurogenesis,” Curr. Opin. Neurol. 16, 129 (2003).

    Article  Google Scholar 

  2. M. A. Smith, L. G. Ries, J. G. Gurney, M. L. Bondy, S. E. Plon, D. Malkin, A. T. Look, I. R. Kirsch, C. J. Thiele, and M. B. Kastan, Principles and Practice of Pediatric Oncology, Ed. by P. A. Pizzo and D. G. Poplack (Lippincott Williams and Wilkins, Philadelphia, 2002).

    Google Scholar 

  3. J. Radcliffe, R. J. Packer, T. E. Atkins, G. R. Bunin, L. Schut, J. W. Goldwein, and L. N. Sutton, “Three-and four-year cognitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy,” Ann. Neurol. 32, 551 (1992).

    Article  Google Scholar 

  4. H. Lackner, M. Benesch, S. Schagerl, R. Kerbl, W. Schwinger, and C. Urban, “Prospective evaluation of late effects after childhood cancer therapy with a follow-up over 9 years,” Eur. J. Pediatr. 159, 750 (2000).

    Article  Google Scholar 

  5. J. R. Crossen, D. Garwood, E. Glatstein, and E. A. Neuwelt, “Neurobehavioral sequelae of cranial irradiation in adults: A review of radiation-induced encephalopathy,” J. Clin. Oncol. 12, 627 (1994).

    Article  Google Scholar 

  6. M. L. Monje, S. Mizumatsu, J. R. Fike, and T. D. Palmer, “Irradiation induces neural precursor-cell dysfunction,” Nat. Med. 8, 955 (2002).

    Article  Google Scholar 

  7. S. Mizumatsu, M. L. Monje, D. R. Morhardt, R. Rola, T. D. Palmer, and J. R. Fike, “Extreme sensitivity of adult neurogenesis to low doses of X-irradiation,” Cancer Res. 63, 4021 (2003).

    Google Scholar 

  8. M. A. Bonaguidi, M. A. Wheeler, J. S. Shapiro, R. P. Stadel, G. J. Sun, G. l. Ming, and H. Song, “In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics,” Cell 145, 1142 (2011).

    Article  Google Scholar 

  9. J. M. Encinas, T. V. Michurina, N. Peunova, J. H. Park, J. Tordo, D. A. Peterson, G. Fishell, A. Koulakov, and G. Enikolopov, “Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus,” Cell Stem Cell. 8, 566 (2011).

    Article  Google Scholar 

  10. E. Cacao and F. A. Cucinotta, “Modeling impaired hippocampal neurogenesis after radiation exposure,” Radiat. Res. 185, 319 (2016).

    Article  ADS  Google Scholar 

  11. E. Cacao, S. Kapukotuwa, and F. A. Cucinotta, “Modeling reveals the dependence of hippocampal neurogenesis radiosensitivity on age and strain of rats,” Front. Neurosci. 12, 980 (2018).

    Article  Google Scholar 

  12. F. Ziebell, A. Martin-Villalba, and A. Marciniak-Czochra, “Mathematical modelling of adult hippocampal neurogenesis: Effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells,” J. R. Soc. Interface 11, 20140144 (2014).

    Article  Google Scholar 

  13. F. Ziebell, S. Dehler, A. Martin-Villalba, and A. Marciniak-Czochra, “Revealing age-related changes of adult hippocampal neurogenesis using mathematical models,” Development 145, dev153544 (2018).

    Google Scholar 

  14. J. M. Long, A. N. Kalehua, N. J. Muth, M. E. Calhoun, M. Jucker, J. M. Hengemihle, D. K. Ingram, and P. R. Mouton, “Stereological analysis of astrocyte and microglia in aging mouse hippocampus,” Neurobiol. Aging 19, 497 (1998).

    Article  Google Scholar 

  15. D. Keller, C. Erö, and H. Markram, “Cell densities in the mouse brain: A systematic review,” Front. Neuroanat. 12, 83 (2018).

    Article  Google Scholar 

  16. B. Steiner, G. Kronenberg, S. Jessberger, M. D. Brandt, K. Reuter, and G. Kempermann, “Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice,” Glia 46, 41 (2004).

    Article  Google Scholar 

  17. R. Rola, J. Raber, A. Rizk, S. Otsuka, S. R. van den Berg, D. R. Morhardt, and J. R. Fike, “Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice,” Exp. Neurol. 188, 316 (2004).

    Article  Google Scholar 

  18. J. D. Rieskamp, P. Sarchet, B. M. Smith, and E. D. Kirby, “Stereological characterization of the major cell lineages in the mouse dorsal dentate gyrus,” bioRxiv (2019). https://doi.org/10.1101/847350

  19. M. B. Nada, L. Slomianka, A. L. Vyssotski, and H. P. Lipp, “Early age-related changes in adult hippocampal neurogenesis in C57 mice,” Neurobiol. Aging. 31, 151 (2010).

    Article  Google Scholar 

  20. A. A. Glebov, E. A. Kolesnikova, and A. N. Bugai, “Mathematical modeling of adult neurogenesis, taking into account the progenitors of oligodendrocytes,” in Medical and Radiation Biophysics: Proceedings of the 28th International Conference on Mathematics. Computer. Education, Jan. 25–30, 2021, Pushchino, 2021, p. 126.

  21. A. A. Glebov, E. A. Kolesnikova, and A. N. Bugai, “Mathematical model of adult neurogenesis, taking into account the population of mature neurons,” in Mathematics and Mathematical Modeling: Proceedings of the 15th All-Russian Youth Scientific and Innovation School, April 13–15, 2021 (Sarov, 2021), pp. 123–124.

  22. A. A. Glebov, E. A. Kolesnikova, and A. N. Bugai, “Modeling of neurogenesis impairment after acute X‑ray irradiation of mice,” Aktual. Vopr. Biol. Fiz. Khim. 6, 280 (2021).

    Google Scholar 

  23. O. A. Mineyeva, D. V. Bezriadnov, A. V. Kedrov, A. A. Lazutkin, K. V. Anokhin, and G. N. Enikolopov, “Radiation induces distinct changes in defined subpopulations of neural stem and progenitor cells in the adult hippocampus,” Front. Neurosci. 12, 1013 (2019).

    Article  Google Scholar 

  24. M. Andres-Mach, R. Rola, and J. R. Fike, “Radiation effects on neural precursor cells in the dentate gyrus,” Cell Tissue Res. 331, 251 (2008).

    Article  Google Scholar 

  25. M. E. Calhoun, D. Kurth, A. L. Phinney, J. M. Long, J. Hengemihle, P. R. Mouton, D. K. Ingram, and M. Jucker, “Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice,” Neurobiol. Aging 19, 599 (1998).

    Article  Google Scholar 

  26. J. Vinet, P. Lemieux, A. Tamburri, P. Tiesinga, J. Scafidi, V. Gallo, and A. Sík, “Subclasses of oligodendrocytes populate the mouse hippocampus,” Eur. J. Neurosci. 31, 425 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Glebov.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebov, A.A., Kolesnikova, E.A. & Bugai, A.N. Mathematical Model of a Radiation-Induced Neurogenesis Impairment. Phys. Part. Nuclei Lett. 19, 422–433 (2022). https://doi.org/10.1134/S1547477122040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122040124

Navigation