Skip to main content
Log in

Production of Ultracold Neutrons in an Escaping Decelerating Trap

  • NEUTRON PHYSICS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract—

Ultracold neutrons (UCNs) are widely used in the physics of elementary particles and fundamental interactions, and they can potentially be used in neutron scattering. However, most of these studies are limited by the available UCN densities and fluxes. One way to increase them is to use peak fluxes in pulsed neutron sources that are orders of magnitude higher than average. In the present work, a concept of UCN sources is proposed that makes it possible to implement this idea. We propose producing very cold neutrons (VCNs) in converters located in neutron sources and extracting and slowing them down to UCN energies by an escaping decelerating material or a magnetic trap. For both pulsed and permanent neutron sources, this method can provide a high conversion efficiency of VCNs to UCNs with low losses of phase space density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. I. Luschikov, Y. N. Pokotilovsky, A. V. Strelkov, and F. L. Shapiro, “Observation of ultracold neutrons,” JETP Lett. 9, 23 (1969).

    ADS  Google Scholar 

  2. A. Steyerl, “Measurements of total cross sections for very slow neutrons with velocities from 100-m/sec to 5‑m/sec,” Phys. Lett. B 29, 33 (1969).

    Article  ADS  Google Scholar 

  3. C. Abel, S. Afach, N. J. Ayres, et al., “Measurement of the permanent electric dipole moment of the neutron,” Phys. Rev. Lett. 124, 081803 (2020).

    Article  ADS  Google Scholar 

  4. B. Lauss, “Ultracold neutron production at the second spallation target of the Paul Scherrer Institute,” Phys. Proc. 51, 98 (2014).

    Article  ADS  Google Scholar 

  5. V. V. Nesvizhevsky, H. G. Boerner, A. K. Petukhov, et al., “Quantum states of neutrons in the Earth’s gravitational field,” Nature (London, U.K.) 415, 297 (2002).

    Article  ADS  Google Scholar 

  6. V. V. Nesvizhevsky, A. Yu. Voronin, R. Cubbit, and K. V. Protasov, “Neutron whispering gallery,” Nat. Phys. 6, 114 (2010).

    Article  Google Scholar 

  7. I. Antoniadis, S. Baessler, M. Buchner, et al., “Short-range fundamental forces,” C. R. Phys. 12, 755 (2011).

    Article  ADS  Google Scholar 

  8. T. Jenke, G. Gronenberg, J. Burgdorfer, et al., “Gravity resonance spectroscopy constrains dark energy and dark matter scenarios,” Phys. Rev. Lett. 112, 151105 (2014).

    Article  ADS  Google Scholar 

  9. A. P. Serebrov, V. E. Varlamov, A. G. Kharitonov, et al., “Neutron lifetime measurements using gravitationally trapped ultracold neutrons,” Phys. Rev. C 78, 035505 (2008).

    Article  ADS  Google Scholar 

  10. A. T. Yue, M. S. Dewey, D. M. Gilliam, et al., “Improved determination of the neutron lifetime,” Phys. Rev. Lett. 111, 22501 (2013).

    Article  Google Scholar 

  11. R. W. Patie, N. B. Callahan, C. Cude-Woods, et al., “Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection,” Science (Washington, DC, U. S.) 360, 627 (2018).

    Article  ADS  Google Scholar 

  12. M. Baldo-Ceolin, P. Benetti, P. Bitter, et al., “A new exprimental limit on neutron-antineutron oscillations,” Zeitschr. Phys. C 63, 409 (1994).

    ADS  Google Scholar 

  13. V. V. Nesvizhevsky, V. Gudkov, K. V. Protasov, et al., “Experimental approach to search for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflection,” Phys. Rev. Lett. 122, 221802 (2019).

    Article  ADS  Google Scholar 

  14. V. V. Nesvizhevsky, V. Gudkov, K. V. Protasov, et al., “Comment on B. O. Kerbikov 'The effect of collisions with the wall on neutron-antineutron transitions',” Phys. Lett. B 803, 135357 (2020).

    Article  MathSciNet  Google Scholar 

  15. K. V. Protasov, V. Gudkov, E. A. Kupriyanova, et al., “Theoretical analysis of antineutron-nucleus data needed for antineutron mirrors in neutron-antineutron oscillation experiments,” Phys. Rev. D: Part. Fields 102, 075025 (2020).

    Article  ADS  Google Scholar 

  16. V. V. Nesvizhevsky, A. Y. Voronin, A. Lambrecht, et al., “The method of UCN 'Small heating' measurement in the big gravitational spectrometer (BGS) and studies of this effect on fomblin oil H-VAC 18/8,” Rev. Sci. Instrum. 89, 023501 (2018).

    Article  ADS  Google Scholar 

  17. S. M. Chernyavsky, E. V. Lychagin, A. Y. Muzychka, et al., “Temperatre dependence of the probability of ‘Small heating’ and total losses of UCNs on the surface of fomblin oils of different molecular mass,” Eur. Phys. J. C 79, 329 (2019).

    Article  ADS  Google Scholar 

  18. P. Ageron, “Cold neutron sources,” Nucl. Instrum. Methods Phys. Res., Sect. A 284, 197 (1989).

    Google Scholar 

  19. A. Steyerl, H. Nagel, F.-X. Schreiber, et al., “A new source of cold and ultracold neutrons,” Phys. Lett. A 116, 347 (1986).

    Article  ADS  Google Scholar 

  20. V. V. Nesvizhevsky, “Interaction of neutrons with nanoparticles,” Phys. At. Nucl. 65, 400 (2002).

    Article  Google Scholar 

  21. R. Golub and J. M. Pendlebury, “The interaction of ultracold neutrons (UCNs) with liquid helium and a superthermal UCN source,” Phys. Lett. A 53, 133 (1975).

    Article  ADS  Google Scholar 

  22. A. Saunders, J. M. Anaya, T. Bowles, et al., “Demonstration of a solid deuterium source of ultracold neutrons,” Phys. Lett. B 593, 55 (2004).

    Article  ADS  Google Scholar 

  23. A. Anghel, F. Atchison, B. Blau, et al., “The PSI ultracold neutron source,” Nucl. Instrum. Methods Phys. Res., Sect. A 611, 272 (2009).

    Google Scholar 

  24. F. M. Piegsa, M. Fertl, S. N. Ivanov, et al., “New source for ultracold neutrons at the institut Laue-Langevin,” Phys. Rev. C 90, 7 (2014).

    Article  Google Scholar 

  25. S. Ahmed et al. (TUCAN Collab.), “First ultracold neutrons at TRIUMF,” Phys. Rev. C 99, 025503 (2019).

    Article  ADS  Google Scholar 

  26. A. P. Serebrov, A. K. Fomin, A. G. Kharitonov, et al., “High-density ultracold neutron sources for the WWR-M and PIK reactors,” Crystallogr. Rep. 61, 144 (2016).

    Article  ADS  Google Scholar 

  27. E. V. Lychagin, V. A. Mityukhlyaev, A. Y. Muzychka, et al., “UCN sources at external beams of thermal neutrons. An example of PIK reactor,” Nucl. Instrum. Methods Phys. Res., Sect. A 83, 47 (2016).

    Google Scholar 

  28. E. V. Lychagin, E. V. Myzychka, V. V. Nesvizhevsky, et al., “Storage of very cold neutrons in a trap with nanostructured walls,” Phys. Lett. B 679, 186 (2009).

    Article  ADS  Google Scholar 

  29. V. V. Nesvizhevsky, U. Koester, M. Dubois, et al., “Fluorinated nanodiamonds as unique neutron reflector,” Carbon 130, 299 (2018).

    Article  Google Scholar 

  30. F. L. Shapiro, “Notes on the measurement of the phases of structural amplitudes in neutron diffraction and on the accumulation of neutrons,” Sov. J. Part. Nucl. 2 (4), 96 (1971).

    Google Scholar 

  31. A. Steyerl, “Neutron turbine as an efficient source of ultracold neutrons,” Nucl. Instrum. Methods Phys. Res., Sect. A 125, 461 (1975).

    Google Scholar 

  32. A. I. Frank and R. Gaehler, “Time focusing of neutrons,” Phys. At. Nucl 63, 545 (2000).

    Article  Google Scholar 

  33. B. V. Bagrjanov, D. G. Kartashov, M. I. Kuvshinov, et al., “Testing experimentally the dynamical convertor method for ultracold neutrons at a pulsed reactor BIGR,” Phys. At. Nucl. 62, 787 (1999).

    Google Scholar 

  34. V. K. Ignatovich, E. V. Lychagin, V. V. Nesvizhevsky, et al., “Neutron transportation in a closed vessel,” Phys. At. Nucl. 65, 2029 (2002).

    Article  Google Scholar 

  35. L. Niel and H. Rauch, “Acceleration, deceleration and monochromatization of neutrons in time dependent magnetic fields,” Z. Phys. B: Condens. Matter 74, 133 (1989).

    Article  ADS  Google Scholar 

  36. N. Vanhaecke, U. Meier, M. Andrist, et al., “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75, 031402 (2007).

    Article  ADS  Google Scholar 

  37. P. Jansen and F. Merkt, “Manipulating beams of paramagnetic atoms and molecules using inhomogenious magnetic fields,” Prog. Nucl. Magn. Res. Spectrosc. 120, 118 (2020).

    Article  Google Scholar 

  38. A. Z. Andreev, A. G. Glushkov, P. Geltenbort, et al., “Ultracold neutron cooling upon reflection from a moving wall,” Tech. Phys. Lett. 39, 370 (2013).

    Article  ADS  Google Scholar 

  39. R. Golub and K. Boning, “New type of low temperature source of ultracold neutrons and production of continous beams of UCN,” Zeitschr. Phys. B 51, 95 (1983).

    ADS  Google Scholar 

  40. Z.-C. Yu, S. S. Malik, and R. Golub, “A thin-film source of ultra-cold neutrons,” Zeitschr. Phys., B 62, 137 (1986).

  41. A. P. Serebrov, V. A. Mityukhlyaev, A. A. Zakharov, et al., “Is it possible to produce next-generation of UCN sources with a density 103–104 cm–3,” JETP Lett. 59, 757 (1994).

    ADS  Google Scholar 

  42. A. P. Serebrov, V. A. Mityukhlyaev, A. A. Zakharov, et al., “Experimental study of a solid deuterium source of ultracold neutrons,” JETP Lett. 62, 785 (1995).

    ADS  Google Scholar 

  43. C.-Y. Liu, A. R. Young, and S. K. Lamoreaux, “Ultracold neutron upscattering rates in a molecular deuterium crystal,” Phys. Rev. B 62, R3581 (2000).

    Article  ADS  Google Scholar 

  44. A. P. Serebrov, E. A. Kolomenski, M. S. Lasakov, et al., “Experimental studies of very cold neutrons passing through solid deuterium,” JETP Lett. 74, 302 (2001).

    Article  ADS  Google Scholar 

  45. C. L. Morris, J. M. Anaya, T. J. Bowles, et al., “Measurements of ultra-cold neutron lifetimes in solid deuterium,” Phys. Rev. Lett. 89, 272501 (2002).

    Article  Google Scholar 

  46. F. Atchison, B. Blau, K. Bodek, et al., “Cold neutron energy dependent production of ultracold neutrons in solid deuterium,” Phys. Rev. Lett. 99, 262502 (2007).

    Article  ADS  Google Scholar 

  47. F. Atchison, B. van der Brandt, T. Brys, et al., “Production of ultracold neutrons from a cold neutron beam on a H-2(2) target,” Phys. Rev. C 71, 054601 (2005).

    Article  ADS  Google Scholar 

  48. A. Frei, Y. Sobolev, I. Altarev, et al., “First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz,” Eur. Phys. J. A 34, 119 (2007).

    Article  ADS  Google Scholar 

  49. D. Bondoux, H. G. Boerner, V. Ermilov, et al., “Investigation of the energy accumulation rate in solid deuterium irradiated with fast electrons,” Nucl. Instrum. Methods Phys. Res., Sect. A 606, 637 (2009).

    Google Scholar 

  50. A. Frei, E. Gutsmiedl, C. Morkel, et al., “Density of states in solid deuterium: Inelastic neutron scattering study,” Phys. Rev. B 80, 064301 (2009).

    Article  ADS  Google Scholar 

  51. A. Frei, E. Gutsmiedl, C. Morkel, et al., “Understanding of ultra-cold-neutron production in solid deuterium,” Eur. Phys. Lett. 92, 62001 (2010).

    Article  ADS  Google Scholar 

  52. Y. Pokotilovski, “UCN transport simulation in solid deuterium crystals,” Nucl. Instrum. Methods Phys. Res., Sect. A 675, 29 (2012).

    Google Scholar 

  53. S. Doege, C.-Y. Liu, A. Young, and C. Morkel, “Incoherent approximation for neutron upscattering cross sections and its corrections for slow neutrons and low crystall temperatures,” Phys. Rev. C 103, 054606 (2021).

    Article  ADS  Google Scholar 

  54. F. Mezei, L. Zanini, A. Takibayev, et al., “Low dimensional neutron moderators for enhanced sources brightness,” J. Neutron Res. 17, 101 (2014).

    Article  Google Scholar 

  55. K. B. Grammer, R. Alarcon, L. Barron-Palos, et al., “Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission,” Phys. Rev. B 91, 180301 (2015).

    Article  ADS  Google Scholar 

  56. Y. Y. Kosvintsev, Y. A. Kushnir, and V. I. Morozov, “Storage of ultracold neutrons in a vessel with a magnetic wall,” JETP Lett. 23, 118 (1976).

    ADS  Google Scholar 

  57. K. J. Kugler, W. Paul, and U. Trinks, “Magnetic storage ring for neutrons,” Phys. Lett. B 72, 422 (1978).

    Article  ADS  Google Scholar 

  58. V. F. Ezhov, A. Z. Andreev, A. A. Glushkov, et al., “First ever storage of ultracold neutrons in a magnetic trap made of permanent magnets,” J. Res. Natl. Inst. Stand. Technol. 110, 4 (2005).

    Article  Google Scholar 

  59. A. I. Frank, G. V. Kulin, and V. A. Bushuev, “Non-stationary transformation of neutron energy by moving grating,” J. Phys.: Conf. Ser. 746, 012053 (2016).

    Google Scholar 

  60. P. Kapitza, “Some oservations on α-particle tracks in a magnetic field,” Proc. Cambridge Phil. Soc. A 109, 511 (1923).

    Google Scholar 

  61. V. V. Nesvizhevsky, “Polished sapphire for ultracold neutron guides,” Nucl. Instrum. Methods Phys. Res., Sect. A 557, 576 (2006).

    Google Scholar 

  62. V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, et al., “Comparison of specularly reflecting mirrors for GRANIT,” Nucl. Instrum. Methods Phys. Res., Sect. A 578, 435 (2007).

    Google Scholar 

  63. I. Meshkov, A. O. Sidorin, A. V. Smirnov, E. M. Syresin, I. V. Titkova, W. Mittig, and P. Roussel-Chomaz, “Individual injection, cooling, and accumulation of rare radioactive ions,” At. Energy 94, 18 (2003).

    Article  Google Scholar 

  64. Y. N. Pokotilovskii, Y. V. Taran, and F. L. Shapiro, “Ferromagnetic gates for ultracold neutrons,” Instrum. Exp. Tech. 10, 631 (1976).

    Google Scholar 

  65. S. Mayer, H. Rauch, P. Geltenbort, et al., “New aspects for high intensity neutron beam production,” Nucl. Instrum. Methods Phys. Res., Sect. A 608, 434 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sidorin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Baldina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesvizhevsky, V.V., Sidorin, A.O. Production of Ultracold Neutrons in an Escaping Decelerating Trap. Phys. Part. Nuclei Lett. 19, 162–175 (2022). https://doi.org/10.1134/S1547477122020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122020066

Navigation