Skip to main content

Advertisement

Log in

Compact ultracold neutron source concept for low-energy accelerator-driven neutron sources

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The concept of a small-scale, pulsed-proton accelerator-based compact ultracold neutron (UCN) source is presented. The essential idea of the compact UCN source is to enclose a volume of superfluid \(^{4}\hbox {He}\) converter with a supercold moderator in the vicinity of a low-radiation neutron production target from (p, n) reactions. The supercold moderator should possess an ability to produce cold neutron flux with a peak brightness near the single-phonon excitation band of the superfluid \(^{4}\hbox {He}\) converter, thereby augmenting the UCN production in the compact UCN source even with very low intensity of neutron brightness. The performance of the compact UCN source is studied in terms of the UCN production and thermal load in the UCN converter. With the proposed concept of the compact UCN source, a UCN production rate of \(P_\mathrm{{UCN}}=80\,\hbox {UCN/cm}^{3}/\hbox {s}\) in the UCN converter could be obtained while maintaining thermal load of the superfluid \(^{4}\hbox {He}\) and its container at a level of \(22~\hbox {mW}\). This study shows that the compact UCN source can produce a high enough density of UCNs at a small-scale, low-energy, pulsed-proton beam facility with reduced efforts on the cooling and radiation protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Patrignani, Particle Data Group, Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  2. H. Abele, T. Jenke, E. Jericha et al., arXiv:1412.5013 (2014)

  3. J.S. Nico, J. Phys. G 36, 104001 (2009)

    Article  ADS  Google Scholar 

  4. C. Abel, N.J. Ayres, G. Ban, G. Bison et al., arXiv:1811.02340 (2018)

  5. T.M. Ito, the nEDM Collaboration, J. Phys. Conf. 69, 012037 (2007)

    Article  Google Scholar 

  6. S.K. Lamoreaux, R. Golub, J. Phys. G 36, 104002 (2009)

    Article  ADS  Google Scholar 

  7. S. Ahmed et al., Phys. Rev. C 99, 025503 (2019)

    Article  ADS  Google Scholar 

  8. C. Abel, S. Afach, N.J. Ayres et al., Phys. Rev. Lett. 124, 081803 (2020)

    Article  ADS  Google Scholar 

  9. A. Pichlmaier, V. Varlamov, K. Schreckenbach, P. Geltenbort, Phys. Lett. B 693, 221 (2010)

    Article  ADS  Google Scholar 

  10. D.J. Salvat et al., Phys. Rev. C 89, 052501 (2014)

    Article  ADS  Google Scholar 

  11. A.P. Serebrov et al., Phys. Rev. C 97, 055503 (2018)

    Article  ADS  Google Scholar 

  12. F.E. Wietfeldt, G.L. Greene, Rev. Mod. Phys. 83, 1173 (2011)

    Article  ADS  Google Scholar 

  13. A.R. Young, S. Clayton, B.W. Filippone et al., J. Phys. G 41, 114007 (2014)

    Article  ADS  Google Scholar 

  14. S. Baessler, V.V. Nesvizhevsky, K.V. Protasov, A.Y. Voronin, Phys. Rev. D 75, 075006 (2007)

    Article  ADS  Google Scholar 

  15. A.P. Serebrov, Phys. Lett. B 680, 423 (2009)

    Article  ADS  Google Scholar 

  16. S. Afach, G. Ban, G. Bison et al., Phys. Lett. B 745, 58 (2015)

    Article  ADS  Google Scholar 

  17. V.V. Nesvizhevsky, H.G. Börner, A.M. Gagarski, A.K. Petoukhov et al., Phys. Rev. D 67, 102002 (2003)

    Article  ADS  Google Scholar 

  18. T. Jenke, P. Geltenbort, H. Lemmel, H. Abele, Nat. Phys. 7, 468 (2011)

    Article  Google Scholar 

  19. G. Pignol, Int. J. Mod. Phys. A 30, 1530048 (2015)

    Article  ADS  Google Scholar 

  20. C. Haddock, J. Amadio, E. Anderson et al., Phys. Lett. B 783, 227 (2018)

    Article  ADS  Google Scholar 

  21. C.C. Haddock, N. Oi, K. Hirota et al., Phys. Rev. D 97, 062002 (2018)

    Article  ADS  Google Scholar 

  22. S.R. Parnell, A.A. van Well, J. Plomp et al., Phys. Rev. Lett. 101, 122002 (2020)

    Google Scholar 

  23. R. Golub, J.M. Pendlebury, Phys. Lett. A 53, 133 (1975)

    Article  ADS  Google Scholar 

  24. R. Golub, Phys. Lett. A 72, 387 (1979)

    Article  ADS  Google Scholar 

  25. R. Golub, C. Jewell, P. Ageron, W. Mampe, B. Heckel, I. Kilvington, Z. Phys. B 51, 187 (1983)

    Article  ADS  Google Scholar 

  26. C.-Y. Liu, A.R. Young, S.K. Lamoreaux, Phys. Rev. B 62, R3581 (2000)

    Article  ADS  Google Scholar 

  27. C.-Y. Liu, A.R. Young, arXiv:nucl-th/0406004 (2006)

  28. A. Frei et al., arXiv:1006.2970 (2010)

  29. R. Golub, K. Boning, Z. Phys. B 51, 95 (1983)

    Article  ADS  Google Scholar 

  30. A. Adamczak, Nucl. Inst. Methods Phys. B 269, 2520 (2011)

    Article  ADS  Google Scholar 

  31. C.L. Morris et al., Phys. Rev. Lett. 89, A262501 (2002)

    Article  Google Scholar 

  32. A. Anghel et al., Eur. Phys. J. A 54, 148 (2018)

    Article  ADS  Google Scholar 

  33. H.S. Sommers, J.G. Dash, L. Goldstein, Phys. Rev. 97, 855 (1955)

    Article  ADS  Google Scholar 

  34. M.R. Gibbs, The collective excitations of superfluid 4He: the dependence on pressure and the effect of restricted geometry, PhD thesis, Keele University (1996)

  35. E. Korobkina, R. Golub, B.W. Wehring, A.R. Young, Phys. Lett. A 301, 462 (2002)

    Article  ADS  Google Scholar 

  36. P. Schmidt-Wellenburg, K.H. Andersen, O. Zimmer, Nucl. Inst. Methods Phys. A 611, 259 (2009)

    Article  ADS  Google Scholar 

  37. W. Masuda et al., Phys. Rev. Lett. 108, 134801 (2012)

    Article  ADS  Google Scholar 

  38. Y. Schreyer et al., arXiv:1912.08073 (2019)

  39. U. Rücker, T. Cronert, J. Voigt et al., Eur. Phys. J. Plus 131 (2016)

  40. T. Gutberlet, U. Rücker, P. Zakalek et al., Physica B 570, 345 (2019)

    Article  ADS  Google Scholar 

  41. J.M. Carpenter, Nat. Rev. Phys. 1, 177 (2019)

    Article  Google Scholar 

  42. C.M. Lavelle, D.V. Baxter, A. Bogdanov et al., Nucl. Inst. Methods A 587, 324 (2008)

    Article  ADS  Google Scholar 

  43. M.A. Lone, C.B. Bigham, J.S. Fraser et al., Nucl. Inst. Methods 143, 331 (1977)

    Article  ADS  Google Scholar 

  44. M.A. Lone, A.M. Ross, J.S. Fraser, S.O. Schriber, Low Energy \(^{7}\)Li(p, n)Be Neutron Source (CANUTRON), Technical Report: AECL-7413, Chalk River Nuclear Laboratories (1982)

  45. C.M. Lavelle, The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS), PhD thesis, Indiana University (2007)

  46. J.M. Carpenter, Nature 330, 358 (1987)

    Article  ADS  Google Scholar 

  47. Y. Shin, C.M. Lavelle, W. Mike-Snow et al., Nucl. Inst. Methods 620, 375 (2010)

    Article  ADS  Google Scholar 

  48. O. Zimmer, Phys. Rev. C 93, 035503 (2016)

    Article  ADS  Google Scholar 

  49. K. Inoue, Y. Kiyanagi, H. Iwasa, Nucl. Inst. Methods 192, 129 (1982)

    Article  ADS  Google Scholar 

  50. S. Grieger, H. Friedrich, K. Guckelsberger et al., J. Chem. Phys. 109, 3161 (1998)

    Article  ADS  Google Scholar 

  51. Y. Ozaki, Y. Kataoka, T. Yamamoto, J. Chem. Phys. 73, 3442 (1980)

    Article  ADS  Google Scholar 

  52. Y. Shin, W. Mike Snow, C.Y. Liu et al., Nucl. Inst. Methods A 620, 382 (2010)

    Article  ADS  Google Scholar 

  53. T. Kamiyama, Y. Kiyanagi, T. Horikawa et al., Physica B 350, e395 (2004)

    Article  Google Scholar 

  54. M. Utsuro, N. Morishima, J. Nucl. Sci. Technol. 18, 739 (1981)

    Article  Google Scholar 

  55. D.B. Pelowitz, MCNPX Users Manual Version 2.7.0. LA-CP-11-00438 (2011)

  56. E.V. Lychagin, AYu. Muzychka, G.V. Nekhaev et al., Adv. High Energy Phys. 2015, 547620 (2015)

    Article  Google Scholar 

  57. T. Kamiyama, N. Seki, H. Iwasa, T. Uchida et al., Physica B 385, 202 (2006)

    Article  ADS  Google Scholar 

  58. K.K.H. Leung, S. Ivanov, F.M. Piegsa et al., Phys. Rev. C 93, 025501 (2016)

    Article  ADS  Google Scholar 

  59. P. Schmidt-Wellenburg, Production of ultracold neutrons in superfluid helium under pressure, PhD thesis, Technische Universität München (2009)

  60. O. Zimmer, K. Baumann, M. Fertl et al., Phys. Rev. Lett. 99, 104801 (2007)

    Article  ADS  Google Scholar 

  61. O. Zimmer, P. Schmidt-Wellenburg, M. Fertl et al., Eur. Phys. J. C 67, 589 (2010)

    Article  ADS  Google Scholar 

  62. F.M. Piegsa, M. Fertl, S.N. Ivanov et al., Phys. Rev. C 90, 015501 (2014)

    Article  ADS  Google Scholar 

  63. T.M. Ito, E.R. Adamek, N.B. Callahan et al., Phys. Rev. C 97, 012501 (2018)

    Article  ADS  Google Scholar 

  64. G. Bison, M. Daum, K. Kirch et al., Phys. Rev. C 95, 045503 (2017)

    Article  ADS  Google Scholar 

  65. L. Göltl, PhD thesis, Ruprecht-Karls-Universität Heidelberg (2012)

  66. D. Evans, Cryogenics 35, 763 (1995)

    Article  ADS  Google Scholar 

  67. R.I. Kaiser, G. Eich, A. Gabrysch, K. Roessler, Astrophys. J. 484, 487 (1997)

    Article  ADS  Google Scholar 

  68. A.R. Young, Physics with spallation ultracold neutrons, RCNP-KEK workshop on fundamental neutron physics and related fields (2005)

  69. Y. Xu, Characterization of solid deuterium ultracold neutron source production and UCN transport, NC State University, PhD Theses (2006)

  70. T.A. Broome, J.R. Hogston, M. Holding, W.S. Howells, The ISIS methane moderator, Technical report, Rutherford Appleton Laboratory (1993)

  71. A. Cianchi, C. Andreani, R. Bedogni et al., Nucl. Inst. Methods A 909, 323 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science under Grant No. IBS-R017-D1-2021-a00. The work of W. Michael Snow is supported by NSF Grant Nos. PHY-1614545 and PHY1913789 and by the IU Center for Spacetime Symmetries. The work by David V. Baxter was supported by the US Department of Commerce through cooperative Agreement Number 70NANB15H259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chang Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.C., Snow, W.M., Baxter, D.V. et al. Compact ultracold neutron source concept for low-energy accelerator-driven neutron sources. Eur. Phys. J. Plus 136, 882 (2021). https://doi.org/10.1140/epjp/s13360-021-01740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01740-1

Navigation