Skip to main content
Log in

Radiation Reaction in Noncommutative Electrodynamics

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We study the radiation reaction acting on an accelerating charge moving in noncommutative spacetime and obtain an expression for it. Radiation reaction, due to a nonrelativistic point charge, is found to receive a small noncommutative correction term. The Abraham–Lorentz equation for a point charge in noncommutative spacetime suffers from the preacceleration and the runaway problems. We explore as an application the radiation reaction experienced by a charge which undergoes harmonic oscillations in a noncommutative plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 2003).

    MATH  Google Scholar 

  2. J. Schwinger, L. L. de Raad, Jr., K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics (Westview, New York, 1998), Chap. 32.

    Google Scholar 

  3. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1964).

    Google Scholar 

  4. R. Jackiw, “Physical instances of noncommuting coordinates,” Nucl. Phys. B Proc. Suppl. 108, 30–36 (2002). https://doi.org/10.1016/S0920-5632(02)01302-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. S. Snyder, Phy. Rev. 71, 38 (1947).

    Article  ADS  Google Scholar 

  6. S. S. Doplicher, K. Fredenhagen and J. E. Roberts, Commun. Math. Phys. 172, 187 (1995);

    Article  ADS  Google Scholar 

  7. Phys. Lett. B 331, 33 (1994).

  8. N. Seiberg and E. Witten, J. High Energy Phys., No. 09, 032 (1999).

  9. R. J. Szabo, Phys. Rep. 278, 207 (2003).

    Article  ADS  Google Scholar 

  10. F. Rohrlich, Classical Charged Particles (World Scientific, Singapore, 2007).

    Book  Google Scholar 

  11. T. C. Adorno, D. M. Gitman, A. E. Shabad, and D. V. Vassilevich, Phys. Rev. D 84, 065003 (2011).

    Article  ADS  Google Scholar 

  12. R. Banerjee, Choonkyu Lee, and Hyun Seok Yang, Phys. Rev. D 70, 065015 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Gopsons Papers, Noida, 1975).

    MATH  Google Scholar 

  14. B. Dragovich and Z. Rakić, Theor. Math. Phys. 140, 1299 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrarul Haque.

APPENDIX A

APPENDIX A

1.1 CALCULATION OF RADIATION REACTION IN NONCOMMUTATIVE ELECTRODYNAMICS

We have

$$\begin{gathered} \int {{{d}^{3}}x{{\partial }_{0}}} \left( {A_{i}^{{{\text{rad}}}}(x){{J}_{\mu }}(x)F_{{{\text{rad}}}}^{{\mu \nu }}(x)} \right) \\ = \int {{{d}^{3}}x} \frac{\partial }{{\partial {{x}^{0}}}}\left( {A_{i}^{{{\text{rad}}}}(x)F_{{{\text{rad}}}}^{{\mu \nu }}(x)} \right){{J}_{\mu }}(x) \\ + \,\,\int {{{d}^{3}}x} \frac{{\partial {{J}_{\mu }}(x)}}{{\partial {{x}^{0}}}}A_{i}^{{{\text{rad}}}}(x)F_{{{\text{rad}}}}^{{\mu \nu }}(x). \\ \end{gathered} $$
(A.1)

Four vector current density due to a point charge is given by

$$\begin{gathered} {{J}_{\mu }}(x) = ec\int {ds{{{\dot {z}}}_{\mu }}(s)} {{\delta }^{4}}(x - z(s)) \\ = ec{{\left. {\frac{{{{{\dot {z}}}_{\mu }}(s){{\delta }^{3}}(\vec {x} - \vec {z}(s))}}{{{{{\dot {z}}}^{0}}(s)}}} \right|}_{{{{x}^{0}} = {{z}^{0}}(s)}}}. \\ \end{gathered} $$
(A.2)

The first term in the above equation after inserting (A.2) gets simplified as

$$\begin{gathered} \int {{{d}^{3}}x\frac{\partial }{{\partial {{x}^{0}}}}} (A_{i}^{{{\text{rad}}}}(x)F_{{{\text{rad}}}}^{{\mu \nu }}(x)){{J}_{\mu }}(x) \\ = ec\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z){{\left( {\frac{{\partial A_{i}^{{{\text{rad}}}}}}{{\partial {{x}^{0}}}}} \right)}_{{x = z(s)}}} \\ + \,\,ec\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}A_{i}^{{{\text{rad}}}}(z){{\left( {\frac{{\partial F_{{\text{rad}}}^{{\mu \nu }}}}{{\partial {{x}^{0}}}}} \right)}_{{x = z(s)}}}. \\ \end{gathered} $$
(A.3)

The second term in Eq. (A.1) becomes

$$\begin{gathered} \int {{{d}^{3}}x} \frac{{\partial {{J}_{\mu }}(x)}}{{\partial {{x}^{0}}}}(A_{i}^{{{\text{rad}}}}(x)F_{{{\text{rad}}}}^{{\mu \nu }}(x)) \\ = ec\frac{{A_{i}^{{{\text{rad}}}}(z)}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z)\frac{\partial }{{\partial s}}\left( {\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}} \right). \\ \end{gathered} $$
(A.4)

Four-vector potential is defined as

$$A_{\mu }^{{{\text{rad}}}}(x) = e\int {ds} D(x - z(s)){{\dot {z}}_{\mu }}(s).$$

At \(x = z(s{\kern 1pt} ')\), we have

$$A_{\mu }^{{{\text{rad}}}}z(s{\kern 1pt} ') = e\int {D(z(s{\kern 1pt} ')} - z(s)){{\dot {z}}_{\mu }}(s)ds.$$
(A.5)

Let \(s = s{\kern 1pt} '\,\, + u\) where u is a small parameter.

$$\begin{gathered} {{z}_{\mu }}(s) = {{z}_{\mu }}(s{\kern 1pt} ') + u{{{\dot {z}}}_{\mu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{2}{{{\ddot {z}}}_{\mu }}(s{\kern 1pt} ') + \frac{{{{u}^{3}}}}{6}{{{\dddot z}}_{\mu }}(s{\kern 1pt} ') \\ + ...{\kern 1pt} {{{\dot {z}}}_{\mu }}(s) = {{{\dot {z}}}_{\mu }}(s{\kern 1pt} ') + u{{{\ddot {z}}}_{\mu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{2}{{{\dddot z}}_{\mu }}(s{\kern 1pt} ') + .... \\ \end{gathered} $$

We know [3]

$$D(z(s{\kern 1pt} ') - z(s)) = \frac{1}{{2\pi }}\frac{{d\delta (u)}}{{du}}.$$

Therefore,

$$A_{\mu }^{{{\text{rad}}}}(z(s{\kern 1pt} ')) = - \frac{e}{{2\pi }}\int {\delta (u)du} ({{\ddot {z}}_{\mu }}(s{\kern 1pt} ') + u{{\dddot z}_{\mu }}(s{\kern 1pt} ') + \ldots ).$$

At \(u = 0,\,\,s = s{\kern 1pt} '\). Hence

$$A_{\mu }^{{{\text{rad}}}}(z(s)) = - \frac{e}{{2\pi }}{{\ddot {z}}_{\mu }}(s).$$
(A.6)

1.1.1 Calculation of \({{({{\partial }_{\nu }}{\mathbf{A}}_{\mu }^{{{\mathbf{rad}}}})}_{{{\mathbf{x}} = {\mathbf{z}}({\mathbf{s}})}}}\)

$$\begin{gathered} {{\partial }_{\nu }}A_{\mu }^{{{\text{rad}}}}(x) = e\frac{\partial }{{\partial {{x}^{\nu }}}}\int {dsD} (x - z(s)){{{\dot {z}}}_{\mu }}(s) \\ = e\int {dsD} (x - z(s))\frac{d}{{ds}}\left[ {\frac{{{{{\dot {z}}}_{\mu }}(s){{{(x - z(s))}}_{\nu }}}}{{{{{(x - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right]. \\ \end{gathered} $$

At \(x = z(s{\kern 1pt} ')\)

$$\begin{gathered} {{\partial }_{\nu }}A_{\mu }^{{{\text{rad}}}}(z(s{\kern 1pt} ')) = e\int {dsD} ((z(s{\kern 1pt} ') \\ - \,\,z(s))\frac{d}{{ds}}\left( {\frac{{{{{\dot {z}}}_{\mu }}(s){{{(z(s{\kern 1pt} ') - z(s))}}_{\nu }}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}}}} \right). \\ \end{gathered} $$

Then,

$${{(z(s{\kern 1pt} ') - z(s))}^{\sigma }}{{\dot {z}}_{\sigma }} = - u + o({{u}^{3}}),$$
(A.7)
$$\begin{gathered} {{{\dot {z}}}_{\mu }}(s){{(z(s{\kern 1pt} ') - z(s))}_{\nu }} \\ = - u\left\{ {\mathop {\dot {z}}\nolimits_\mu (s{\kern 1pt} '){{{\dot {z}}}_{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{{}}}}}{2}\mathop {\dot {z}}\nolimits_\mu (s{\kern 1pt} '){{{\ddot {z}}}_{\nu }}(s{\kern 1pt} ') + u{{{\ddot {z}}}_{\mu }}(s{\kern 1pt} '){{{\dot {z}}}_{\nu }}(s{\kern 1pt} ')} \right. \\ + \,\,\frac{{{{u}^{2}}}}{6}{{{\dot {z}}}_{\mu }}(s{\kern 1pt} '){{{\dddot z}}_{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{2}{{{\ddot {z}}}_{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}_{\nu }}(s{\kern 1pt} ') \\ \left. { + \,\,\frac{{{{u}^{2}}}}{2}{{{\dddot z}}_{\mu }}(s{\kern 1pt} '){{{\dot {z}}}_{\nu }}(s{\kern 1pt} ') + ...} \right\}, \\ \end{gathered} $$
(A.8)
$$\begin{gathered} {{({{\partial }_{\nu }}A_{\mu }^{{{\text{rad}}}})}_{{x = z(s)}}} = - \frac{e}{{2\pi }} \\ \times \,\,\left( {\frac{1}{3}{{{\dot {z}}}_{\mu }}(s){{{\dddot z}}_{\nu }}(s) + {{{\ddot {z}}}_{\mu }}(s){{{\ddot {z}}}_{\nu }}(s) + {{{\dddot z}}_{\mu }}(s){{{\dot {z}}}_{\nu }}(s)} \right). \\ \end{gathered} $$
(A.9)

Therefore,

$$\begin{gathered} F_{{{\text{rad}}}}^{{\mu \nu }}(z(s)) = {{\left( {{{\partial }^{\mu }}A_{{{\text{rad}}}}^{\nu } - {{\partial }^{\nu }}A_{{{\text{rad}}}}^{\mu }} \right)}_{{x = z(s)}}} \\ = \frac{e}{{3\pi }}\left( {{{{\dot {z}}}^{\nu }}(s){{{\dddot z}}^{\mu }}(s) - {{{\dddot z}}^{\nu }}(s){{{\dot {z}}}^{\mu }}(s)} \right). \\ \end{gathered} $$
(A.10)

1.1.2 Calculation of the Term \(ec\tfrac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s)){{\left( {\tfrac{{\partial A_{i}^{{{\text{rad}}}}}}{{\partial {{x}^{0}}}}} \right)}_{{x = z(s)}}}\)

From Eq. (A.9)

$$\begin{gathered} {{({{\partial }_{0}}A_{i}^{{{\text{rad}}}})}_{{x = z(s)}}} = - \frac{e}{{2\pi }} \\ \times \,\,\left( {\frac{1}{3}{{{\dot {z}}}_{i}}(s){{{\dddot z}}_{0}}(s) + {{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}_{0}}(s) + {{{\dddot z}}_{i}}(s){{{\dot {z}}}_{0}}(s)} \right). \\ \end{gathered} $$

Therefore,

$$\begin{gathered} ec\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s)){{({{\partial }_{0}}A_{i}^{{{\text{rad}}}})}_{{x = z(s)}}} \\ = - \frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}\frac{2}{3}\frac{{{{e}^{2}}c}}{{2\pi }}\left( {{{{\dot {z}}}^{\nu }}(s){{{\dddot z}}^{\mu }}(s) - {{{\dddot z}}^{\nu }}(s){{{\dot {z}}}^{\mu }}(s)} \right) \\ \times \,\,\frac{e}{{2\pi }}\left( {\frac{1}{3}{{{\dot {z}}}_{i}}(s){{{\dddot z}}_{0}}(s) + {{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}_{0}}(s) + {{{\dddot z}}_{i}}(s){{{\dot {z}}}_{0}}(s)} \right). \\ \end{gathered} $$

We know that

$$\begin{gathered} {{{\dot {z}}}^{\mu }}(s){{{\dot {z}}}^{\mu }}(s) = 1,\,\,\,\,{{{\dot {z}}}^{\mu }}(s){{{\ddot {z}}}^{\mu }}(s) = 0, \\ {{{\dot {z}}}^{\mu }}(s){{{\dddot z}}^{\mu }}(s) + {{{\ddot {z}}}_{\mu }}(s){{{\ddot {z}}}^{\mu }}(s) = 0, \\ {{{\dot {z}}}^{\mu }}(s){{{\dddot z}}^{\mu }}(s) = - {{{\ddot {z}}}^{2}}(s). \\ \end{gathered} $$

Then,

$$\begin{gathered} ec\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s)){{({{\partial }_{0}}A_{i}^{{{\text{rad}}}})}_{{x = z(s)}}} \\ = \frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\left( {{{{\dddot z}}^{\nu }}(s) + {{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}^{2}}(s)} \right)\frac{1}{{{{{\dot {z}}}^{0}}(s)}} \\ \times \,\,\left( {\frac{1}{3}{{{\dot {z}}}_{i}}(s){{{\dddot z}}_{0}}(s) + {{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}_{0}}(s) + {{{\dddot z}}_{i}}(s){{{\dot {z}}}_{0}}(s)} \right). \\ \end{gathered} $$
(A.11)

1.1.3 Calculation of the Term \(ec\tfrac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}A_{i}^{{{\text{rad}}}}(z(s)){{({{\partial }_{0}}F_{{{\text{rad}}}}^{{\mu \nu }}(x))}_{{x = z(s)}}}\)

We have

$${{\partial }_{0}}F_{{{\text{rad}}}}^{{\mu \nu }}(x) = \frac{\partial }{{\partial {{x}^{0}}}}({{\partial }^{\mu }}{{A}^{\nu }}(x) - {{\partial }^{\nu }}{{A}^{\mu }}(x)),$$
(A.12)

where

$$\begin{gathered} \frac{\partial }{{\partial {{x}^{0}}}}({{\partial }^{\nu }}{{A}^{\mu }}(x)) = e\int {ds} \frac{{\partial D(x - z(s))}}{{\partial {{x}^{0}}}}\frac{d}{{ds}} \\ \times \,\,\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(x - z(s))}}^{\nu }}}}{{{{{(x - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right] + e\int {ds} D(x - z(s)) \\ \times \,\,\frac{d}{{ds}}\frac{\partial }{{\partial {{x}^{0}}}}\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(x - z(s))}}^{\nu }}}}{{{{{(x - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right]. \\ \end{gathered} $$
(A.13)

The first term of the above Eq. (A.13) is

$$\begin{gathered} e\int {ds} \frac{{\partial D(x - z(s))}}{{\partial {{x}^{0}}}}\frac{d}{{ds}}\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(x - z(s))}}^{\nu }}}}{{{{{(x - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}}}} \right] \\ = e\int {ds} D(x - z(s))\frac{d}{{ds}}\left\{ {\frac{{{{{(x - z(s))}}^{0}}}}{{{{{(x - z(s))}}^{\rho }}{{{\dot {z}}}_{\rho }}(s)}}} \right. \\ \times \,\,\left. {\frac{d}{{ds}}\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(x - z(s))}}^{\nu }}}}{{{{{(x - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right]} \right\}. \\ \end{gathered} $$

At \(x = z(s{\kern 1pt} ')\) the above equation becomes:

$$\begin{gathered} = e\int {ds} D(z(s{\kern 1pt} ') - z(s))\left\{ {\frac{d}{{ds}}\left( {\frac{{{{{(z(s{\kern 1pt} ') - z(s))}}^{0}}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\rho }}{{{\dot {z}}}_{\rho }}(s)}}} \right)} \right. \\ \left. { \times \,\,\frac{d}{{ds}}\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(z(s{\kern 1pt} ') - z(s))}}^{\nu }}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right]} \right\} + e\int {ds} D(z(s{\kern 1pt} ') \\ - \,\,z(s))\left\{ {\frac{{{{{(z(s{\kern 1pt} ') - z(s))}}^{0}}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\rho }}{{{\dot {z}}}_{\rho }}(s)}}} \right. \\ \left. { \times \,\,\frac{{{{d}^{2}}}}{{d{{s}^{2}}}}\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(z(s{\kern 1pt} ') - z(s))}}^{\nu }}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right]} \right\}. \\ \end{gathered} $$
(A.14)

The first term in Eq. (A.14) can be expressed as

$$\begin{gathered} = \frac{e}{{2\pi }} \\ \times \,\,\int {du} \frac{{d\delta (u)}}{{du}}\left\{ {\left[ {\frac{d}{{du}}({{{\dot {z}}}^{0}}(s{\kern 1pt} ')} \right.} \right.\left. { + \frac{u}{2}{{{\ddot {z}}}^{0}}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{6}{{{\dddot z}}^{0}}(s{\kern 1pt} ')....)} \right] \\ \times \,\,\frac{d}{{du}}\left( {{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{u}{2}{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ')} \right. \\ + \,\,u{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{6}{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ') \\ + \,\,\frac{{{{u}^{2}}}}{2}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{2}{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') \\ \left. {\left. { + \,\,\frac{{{{u}^{3}}}}{6}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{3}}}}{4}{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ')...} \right)} \right\} \\ = - \frac{e}{{2\pi }}\int {du} \delta (u)\left( {\frac{{{{d}^{2}}P(u)}}{{d{{u}^{2}}}}\frac{{dQ(u)}}{{du}} + \frac{{dP(u)}}{{du}}\frac{{{{d}^{2}}Q(u)}}{{d{{u}^{2}}}}} \right), \\ \end{gathered} $$
(A.15)

where

$$\begin{gathered} P(u) = ({{{\dot {z}}}^{0}}(s{\kern 1pt} ') + \frac{u}{2}{{{\ddot {z}}}^{0}}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{6}{{{\dddot z}}^{0}}(s{\kern 1pt} ')....), \\ Q(u) = {{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{u}{2}{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') \\ + \,\,u{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{6}{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ') \\ + \,\,\frac{{{{u}^{2}}}}{2}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{2}}}}{2}{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') \\ + \,\,\frac{{{{u}^{3}}}}{6}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ') + \frac{{{{u}^{3}}}}{4}{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') \ldots \\ \end{gathered} $$
(A.16)

The second term in Eq. (A.14) can be expressed as

$$ = - \frac{e}{{2\pi }}\int {du} \delta (u)\left( {\frac{{dP(u)}}{{du}}\frac{{{{d}^{2}}Q(u)}}{{d{{u}^{2}}}} + P(u)\frac{{{{d}^{3}}Q(u)}}{{d{{u}^{3}}}}} \right).$$
(A.17)

Now, Eq. (A.14) becomes:

$$\begin{gathered} = - \frac{e}{{2\pi }}\int {du} \delta (u)\left\{ {\frac{{{{d}^{2}}P(u)}}{{d{{u}^{2}}}}\frac{{dQ(u)}}{{du}}} \right. \\ \left. { + \,\,2\frac{{dP(u)}}{{du}}\frac{{{{d}^{2}}Q(u)}}{{d{{u}^{2}}}} + P(u)\frac{{{{d}^{3}}Q(u)}}{{d{{u}^{3}}}}} \right\} \\ = - \frac{e}{{2\pi }}\left[ {\frac{{{{{\dddot z}}^{0}}(s)}}{3}\left( {\frac{{{{{\dot {z}}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s)}}{2} + {{{\ddot {z}}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s)} \right)} \right. \\ + \,\,{{{\ddot {z}}}^{0}}(s) \\ \times \,\,\left\{ {{{{\dddot z}}^{\nu }}(s)\frac{{{{{\dot {z}}}^{\mu }}(s)}}{3}(s) + {{{\ddot {z}}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s) + {{{\dddot z}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s)} \right\} \\ + \,\,{{{\dot {z}}}^{0}}(s)\left. {\left\{ {{{{\ddot {z}}}^{\mu }}(s){{{\dddot z}}^{\nu }}(s) + \frac{3}{2}{{{\dddot z}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s)} \right\}} \right]. \\ \end{gathered} $$
(A.18)

At \(x = z(s{\kern 1pt} ')\) the second term in Eq. (A.13) is

$$\begin{gathered} e\int {ds} D(z(s{\kern 1pt} ') - z(s))\frac{d}{{ds}}\frac{\partial }{{\partial {{z}^{0}}(s{\kern 1pt} ')}} \\ \times \,\,\left[ {\frac{{{{{\dot {z}}}^{\mu }}(s){{{(z(s{\kern 1pt} ') - z(s))}}^{\nu }}}}{{{{{(z(s{\kern 1pt} ') - z(s))}}^{\sigma }}{{{\dot {z}}}_{\sigma }}(s)}}} \right] \\ = - \frac{e}{{2\pi }}\int {du} \frac{1}{{{{{\dot {z}}}^{0}}(s{\kern 1pt} ')}}\delta (u)\frac{{{{d}^{2}}}}{{d{{u}^{2}}}} \\ \times \,\,\left( {{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') + {{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') + \frac{u}{2}{{{\dot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ')} \right. \\ + \,\,\frac{{3u}}{2}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ') + u{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\dot {z}}}^{\nu }}(s{\kern 1pt} ') \\ \left. { + \,\,\frac{{2{{u}^{2}}}}{3}{{{\ddot {z}}}^{\mu }}(s{\kern 1pt} '){{{\dddot z}}^{\nu }}(s{\kern 1pt} ') + {{u}^{2}}{{{\dddot z}}^{\mu }}(s{\kern 1pt} '){{{\ddot {z}}}^{\nu }}(s{\kern 1pt} ')} \right) \\ = - \frac{e}{{2\pi }}\frac{1}{{{{{\dot {z}}}^{0}}(s)}}\left( {\frac{4}{3}{{{\dddot z}}^{\nu }}(s){{{\ddot {z}}}^{\nu }}(s) + 2{{{\dddot z}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s)} \right). \\ \end{gathered} $$
(A.19)

By substituting Eqs. (A.18) and (A.19) in Eq. (A.13), we have,

$$\begin{gathered} \frac{\partial }{{\partial {{x}^{0}}}}{{({{\partial }^{\nu }}{{A}^{\mu }}(x))}_{{x = z(s)}}} = - \frac{e}{{2\pi }} \\ \times \,\,\left[ {\frac{1}{3}{{{\dddot z}}^{0}}(s)\left\{ {\frac{1}{2}{{{\dot {z}}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s) + {{{\ddot {z}}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s)} \right\}} \right. \\ + \,\,{{{\ddot {z}}}^{0}}(s)\left\{ {\frac{1}{3}{{{\dddot z}}^{\nu }}(s){{{\dot {z}}}^{\mu }}(s) + {{{\ddot {z}}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s) + {{{\dddot z}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s)} \right\} \\ + \,\,{{{\dot {z}}}^{0}}(s)\left\{ {{{{\ddot {z}}}^{\mu }}(s){{{\dddot z}}^{\nu }}(s) + \frac{3}{2}{{{\dddot z}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s)} \right\} \\ \left. { + \,\,\frac{1}{{{{{\dot {z}}}^{0}}(s)}}\left\{ {\frac{4}{3}{{{\dddot z}}^{\nu }}(s){{{\ddot {z}}}^{\mu }}(s) + 2{{{\dddot z}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s)} \right\}} \right]. \\ \end{gathered} $$
(A.20)

Then

$$\begin{gathered} {{({{\partial }_{0}}{{F}^{{\mu \nu }}}(x))}_{{x = z(s)}}} = \tfrac{e}{{2\pi }}\left[ {\tfrac{{{{{\dddot z}}^{0}}(s)}}{6}\left( {{{{\ddot {z}}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s) - {{{\ddot {z}}}^{\nu }}(s){{{\dot {z}}}^{\mu }}(s)} \right)} \right. \\ + \,\,\tfrac{2}{3}{{{\ddot {z}}}^{0}}(s)\left( {{{{\dddot z}}^{\mu }}(s){{{\dot {z}}}^{\nu }}(s) - {{{\dddot z}}^{\nu }}(s){{{\dot {z}}}^{\mu }}(s)} \right) \\ \left. { + \,\,\left( {{{{\dddot z}}^{\mu }}(s){{{\ddot {z}}}^{\nu }}(s) - {{{\dddot z}}^{\nu }}(s){{{\ddot {z}}}^{\mu }}(s)} \right)\left( {\tfrac{1}{2}{{{\dot {z}}}^{0}}(s) + \tfrac{2}{3}\tfrac{1}{{{{{\dot {z}}}^{0}}(s)}}} \right)} \right]. \\ \end{gathered} $$

Therefore,

$$\begin{gathered} ec\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}A_{i}^{{{\text{rad}}}}(z(s)){{({{\partial }_{0}}F_{{{\text{rad}}}}^{{\mu \nu }}(x))}_{{x = z(s)}}} = \frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{\dot {z}}}^{0}}(s)}} \\ \times \,\,\left[ {\frac{{{{{\dddot z}}^{0}}(s){{{\ddot {z}}}^{\nu }}(s)}}{6}} \right. + \frac{2}{3}{{{\ddot {z}}}^{0}}(s)\left( {{{{\dddot z}}^{\nu }}(s) + {{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right) \\ \left. { + \,\,{{{\ddot {z}}}^{2}}(s){{{\ddot {z}}}^{\nu }}(s)\left( {\frac{1}{2}{{{\dot {z}}}^{0}}(s) + \frac{2}{3}\frac{1}{{{{{\dot {z}}}^{0}}(s)}}} \right)} \right]. \\ \end{gathered} $$
(A.21)

1.1.4 Calculation of the Term \(ec\tfrac{{A_{i}^{{{\text{rad}}}}(z(s))}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s))\tfrac{\partial }{{\partial s}}\left( {\tfrac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}} \right)\)

We have

$$\begin{gathered} \frac{{A_{i}^{{{\text{rad}}}}(z(s))}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s))\frac{\partial }{{\partial s}}\left[ {\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}} \right] = \frac{{{{{\ddot {z}}}_{\mu }}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}} \\ \times \,\,F_{{rad}}^{{\mu \nu }}(z(s))A_{i}^{{{\text{rad}}}}(z(s)) - \frac{{{{{\dot {z}}}_{\mu }}{{{\ddot {z}}}^{0}}}}{{{{{({{{\dot {z}}}^{0}})}}^{3}}}}F_{{{\text{rad}}}}^{{\mu \nu }}(z)A_{i}^{{{\text{rad}}}}(z). \\ \end{gathered} $$

Then,

$$\begin{gathered} \frac{{{{{\ddot {z}}}_{\mu }}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s))A_{i}^{{{\text{rad}}}}(z(s)) = - \frac{2}{3}\frac{{{{e}^{2}}}}{{4{{\pi }^{2}}}} \\ \times \,\,\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}}\left( {{{{\dot {z}}}^{\mu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\nu }}(s) - {{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\mu }}(s)} \right) \\ = \frac{2}{3}\frac{{{{e}^{2}}}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}}{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\mu }}(s) \\ \end{gathered} $$
(A.22)

and

$$\begin{gathered} \frac{{{{{\ddot {z}}}^{0}}(s){{{\dot {z}}}_{\mu }}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{3}}}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s))A_{i}^{{{\text{rad}}}}(z(s)) \\ = \frac{2}{3}\frac{{{{e}^{2}}}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}^{0}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{3}}}}\left( {{{{\dddot z}}^{\nu }}(s) + {{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right). \\ \end{gathered} $$
(A.23)

Therefore,

$$\begin{gathered} ec\frac{{A_{i}^{{{\text{rad}}}}(z(s))}}{{{{{\dot {z}}}^{0}}(s)}}F_{{{\text{rad}}}}^{{\mu \nu }}(z(s))\frac{\partial }{{\partial s}}\left( {\frac{{{{{\dot {z}}}_{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}} \right) \\ = \frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}}{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\mu }}(s) \\ - \,\,\frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}^{0}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{3}}}}\left( {{{{\dddot z}}^{\nu }}(s) + {{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right). \\ \end{gathered} $$
(A.24)

From Eqs. (A.11) and (A.21),

$$\begin{gathered} \int {\frac{\partial }{{\partial {{x}^{0}}}}} (A_{i}^{{{\text{rad}}}}F_{{{\text{rad}}}}^{{\mu \nu }}){{J}_{\mu }}{{d}^{3}}x = \frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}} \\ \times \,\,\left( {{{{\dddot z}}^{\nu }}(s) + {{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}^{2}}(s)} \right)\frac{1}{{{{{\dot {z}}}^{0}}(s)}} \\ \times \,\,\left( {\frac{1}{3}{{{\dot {z}}}_{i}}(s){{{\dddot z}}_{0}}(s) + {{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}_{0}}(s) + {{{\dddot z}}_{i}}(s){{{\dot {z}}}_{0}}(s)} \right) \\ + \,\,\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{\dot {z}}}^{0}}(s)}}\left[ {\frac{{{{{\dddot z}}^{0}}(s){{{\ddot {z}}}^{\nu }}(s)}}{6}} \right. \\ + \,\,\frac{2}{3}{{{\ddot {z}}}^{0}}(s)\left( {{{{\dddot z}}^{\nu }}(s) + {{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right) \\ \left. { + \,\,{{{\ddot {z}}}^{2}}(s){{{\ddot {z}}}^{\nu }}(s)\left( {\frac{1}{2}{{{\dot {z}}}^{0}}(s) + \frac{2}{3}\frac{1}{{{{{\dot {z}}}^{0}}(s)}}} \right)} \right]. \\ \end{gathered} $$
(A.25)

From Eqs. (A.22) and (A.23), we have

$$\begin{gathered} \int {\frac{{\partial {{J}_{\mu }}}}{{\partial {{x}^{0}}}}} (A_{i}^{{{\text{rad}}}}F_{{{\text{rad}}}}^{{\mu \nu }}){{d}^{3}}x \\ = \frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}}{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\mu }}(s) \\ - \,\,\frac{2}{3}\frac{{{{e}^{3}}c}}{{4{{\pi }^{2}}}}\frac{{{{{\ddot {z}}}_{i}}(s){{{\ddot {z}}}^{0}}(s)}}{{{{{({{{\dot {z}}}^{0}}(s))}}^{3}}}}\left( {{{{\dddot z}}^{\nu }}(s) + {{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right). \\ \end{gathered} $$
(A.26)

Radiation reaction becomes

$$\begin{gathered} G_{{NC}}^{\nu } = - \frac{2}{3}\frac{{{{e}^{2}}}}{{4\pi }}\frac{1}{{{{{\dot {z}}}^{0}}(s)}}\left( {{{{\dddot z}}^{\nu }}(s)\, + \,{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}^{2}}(s)} \right)\, + \,{{\theta }^{{0i}}}\frac{{{{e}^{3}}}}{{16{{\pi }^{2}}}} \\ \times \,\left\{ {\frac{{{{{\ddot {z}}}^{i}}(s)}}{{{{{\dot {z}}}^{0}}(s)}}\left[ {\frac{2}{3}{{{\ddot {z}}}^{0}}(s)\left( {{{{\dddot z}}^{\nu }}(s)\, + \,{{{\ddot {z}}}^{2}}(s){{{\dot {z}}}^{\nu }}(s)} \right)} \right.} \right. \\ \times \,\left( {\frac{1}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}} - 2} \right)\, - \,\frac{1}{6}{{{\dddot z}}^{0}}(s){{{\ddot {z}}}^{\nu }}(s) \\ - \,{{{\ddot {z}}}^{2}}(s){{{\ddot {z}}}^{\nu }}(s)\left( {\frac{1}{2}{{{\dot {z}}}^{0}}(s)\, + \,\frac{2}{3}\frac{1}{{{{{\dot {z}}}^{0}}(s)}}} \right) \\ \left. { - \,\frac{{{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}_{\mu }}(s){{{\dddot z}}^{\mu }}(s)}}{{{{{\dot {z}}}^{0}}(s)}}} \right]\, - \,\frac{2}{3}\left( {{{{\dddot z}}^{\nu }}(s)\, + \,{{{\dot {z}}}^{\nu }}(s){{{\ddot {z}}}^{2}}(s)} \right) \\ \times \,\left. {\frac{1}{{{{{\dot {z}}}^{0}}(s)}}\left( {\frac{1}{3}{{{\dot {z}}}^{i}}(s){{z}_{0}}(s)\, + \,{{{\dddot z}}^{i}}(s){{{\dot {z}}}_{0}}(s)} \right)} \right\}, \\ \end{gathered} $$
(A.27)

where

$$\begin{gathered} \frac{{{{{\ddot {z}}}^{i}}(s){{{\ddot {z}}}^{0}}(s)}}{{{{{\dot {z}}}^{0}}(s)}}\left( {{{z}^{j}}(s) + {{{\dot {z}}}^{j}}(s){{{\ddot {z}}}^{2}}(s)} \right)\left( {\frac{1}{{{{{({{{\dot {z}}}^{0}}(s))}}^{2}}}} - 2} \right) \\ = - \frac{1}{\gamma }\frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}\left( {{{{\dot {v}}}_{i}} + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{i}}(\vec {v} \cdot \dot {\vec {v}})} \right)\frac{{{{\gamma }^{4}}}}{{{{c}^{3}}}}(\vec {v} \cdot \dot {\vec {v}})\frac{{{{\gamma }^{3}}}}{{{{c}^{3}}}} \\ \times \,\,\left( {{{{\ddot {v}}}_{j}} + \frac{{3{{\gamma }^{2}}}}{{{{c}^{2}}}}{{{\dot {v}}}_{j}}(\vec {v} \cdot \dot {\vec {v}}) + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{j}}(\vec {v} \cdot \ddot {\vec {v}})} \right. \\ \left. { + \,\,\frac{{3{{\gamma }^{4}}}}{{{{c}^{4}}}}{{{(\vec {v} \cdot \dot {\vec {v}})}}^{2}}{{v}_{j}}} \right)\left( {1 + \frac{{{{v}^{2}}}}{{{{c}^{2}}}}} \right) \\ = - \frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}_{i}}(\vec {v} \cdot \dot {\vec {v}}){{{\ddot {v}}}_{j}} - \frac{{{{\gamma }^{8}}}}{{{{c}^{{10}}}}}{{v}^{2}}{{{\dot {v}}}_{i}}(\vec {v} \cdot \dot {\vec {v}}){{{\ddot {v}}}_{j}}, \\ \end{gathered} $$
(A.28)

with,

$$\begin{gathered} \frac{{{{{\ddot {z}}}^{i}}(s)}}{{{{{\dot {z}}}^{0}}(s)}}{{{\ddot {z}}}^{j}}{{z}^{0}}(s) = \frac{1}{\gamma }\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}\left( {{{{\dot {v}}}_{i}} + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{i}}(\vec {v} \cdot \dot {\vec {v}})} \right) \\ \times \,\,\left( {{{{\dot {v}}}_{j}} + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{j}}(\vec {v} \cdot \dot {\vec {v}})} \right) \\ \times \,\,\left( {(\vec {v} \cdot \ddot {\vec {v}}) + {{{\dot {v}}}^{2}} + 4\frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{{(\vec {v} \cdot \dot {\vec {v}})}}^{2}}} \right) \\ = \frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}_{i}}\left( {(\vec {v} \cdot \ddot {\vec {v}}) + {{{\dot {v}}}^{2}}} \right){{{\dot {v}}}_{j}} \\ \end{gathered} $$
(A.29)

and

$$\begin{gathered} \frac{{{{{\ddot {z}}}^{i}}(s)}}{{{{{\dot {z}}}^{0}}(s)}}{{{\ddot {z}}}^{2}}(s){{{\ddot {z}}}^{j}}(s)\left( {\frac{{{{z}^{0}}(s)}}{2} + \frac{2}{{3{{{\dot {z}}}^{0}}(s)}}} \right) \\ = \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}\left( {{{{\dot {v}}}_{i}} + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{i}}(\vec {v} \cdot \dot {\vec {v}})} \right)\frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}\left( {{{{\dot {v}}}_{j}} + \frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{v}_{j}}(\vec {v} \cdot \dot {\vec {v}})} \right) \\ \times \,\,\left( { - \frac{{{{\gamma }^{4}}}}{{{{c}^{4}}}}} \right)\left( {{{{\dot {v}}}^{2}} + 2\frac{{{{\gamma }^{2}}}}{{{{c}^{2}}}}{{{(\vec {v} \cdot \dot {\vec {v}})}}^{2}} + \frac{{{{\gamma }^{4}}}}{{{{c}^{4}}}}{{v}^{2}}{{{(\vec {v} \cdot \dot {\vec {v}})}}^{2}}} \right. \\ \left. { - \,\,\frac{{{{\gamma }^{4}}}}{{{{c}^{2}}}}{{{(\vec {v} \cdot \dot {\vec {v}})}}^{2}}} \right)\left( {\frac{1}{2} + \frac{2}{3}\left( {1 - \frac{{{{v}^{2}}}}{{{{c}^{2}}}}} \right)} \right) \\ = - \frac{{7{{\gamma }^{8}}}}{{6{{c}^{8}}}}{{{\dot {v}}}_{i}}{{{\dot {v}}}^{2}}{{{\dot {v}}}_{j}} + \frac{{2{{\gamma }^{8}}}}{{3{{c}^{{10}}}}}{{{\dot {v}}}_{i}}{{{\dot {v}}}^{2}}{{{\dot {v}}}_{j}}{{v}^{2}}. \\ \end{gathered} $$
(A.30)

Here,

$$\begin{gathered} \frac{{{{{\ddot {z}}}^{i}}}}{{{{{({{{\dot {z}}}^{0}})}}^{2}}}}{{{\dot {z}}}^{j}}{{{\ddot {z}}}_{\mu }}{{z}^{\mu }} = - \frac{{{{\gamma }^{6}}}}{{{{c}^{6}}}}{{{\dot {v}}}_{i}}{{v}_{j}}\dot {\vec {v}} \cdot \ddot {\vec {v}} - 3\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}_{i}}{{v}_{j}}{{{\dot {v}}}^{2}}\vec {v} \cdot \dot {\vec {v}} \\ - \,\,\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}_{i}}{{v}^{j}}\vec {v} \cdot \dot {\vec {v}}\left( {{{{\dot {v}}}^{2}} + \vec {v} \cdot \ddot {\vec {v}}} \right) \\ - \,\,\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}^{i}}{{v}^{j}}\left( {\vec {v} \cdot \dot {\vec {v}}} \right)\left( {\vec {v} \cdot \ddot {\vec {v}}} \right) \\ - \,\,\frac{{{{\gamma }^{8}}}}{{{{c}^{{10}}}}}{{v}^{i}}{{v}^{j}}\left( {\vec {v} \cdot \dot {\vec {v}}} \right)\left( {\dot {\vec {v}} \cdot \ddot {\vec {v}}} \right), \\ \end{gathered} $$
(A.31)

and

$$\begin{gathered} \frac{1}{{{{{\dot {z}}}^{0}}}}\left( {{{z}^{i}}{{{\dot {z}}}^{0}} + \frac{1}{3}{{{\dot {z}}}^{i}}{{z}^{0}}} \right)\left( {{{z}^{j}} + {{{\dot {z}}}^{j}}\mathop {\ddot {z}}\nolimits^2 } \right) \\ = \frac{{{{\gamma }^{6}}}}{{{{c}^{6}}}}{{{\ddot {v}}}_{i}}{{{\ddot {v}}}_{j}} + 3\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\ddot {v}}}_{i}}{{{\dot {v}}}_{j}}\left( {\vec {v} \cdot \dot {\vec {v}}} \right) \\ + \,\,\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\ddot {v}}}_{i}}{{v}_{j}}\left( {\vec {v} \cdot \ddot {\vec {v}}} \right) + 3\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{{\dot {v}}}_{i}}{{{\ddot {v}}}_{j}}\left( {\vec {v} \cdot \dot {\vec {v}}} \right) \\ + \,\,\frac{4}{3}\frac{{{{\gamma }^{8}}}}{{{{c}^{8}}}}{{v}_{i}}{{{\ddot {v}}}_{j}}\left( {{{{\dot {v}}}^{2}} + \vec {v} \cdot \ddot {\vec {v}}} \right). \\ \end{gathered} $$
(A.32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veera Reddy, V., Gutti, S. & Haque, A. Radiation Reaction in Noncommutative Electrodynamics. Phys. Part. Nuclei Lett. 19, 16–25 (2022). https://doi.org/10.1134/S1547477122010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122010101

Navigation