Skip to main content
Log in

Generalised Fayet–Iliopoulos Terms in Supergravity

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The U(1) vector multiplet theory with the Fayet–Iliopoulos (FI) term is one of the oldest and simplest models for spontaneously broken rigid supersymmetry. Lifting the FI term to supergravity requires gauged \(R\)-symmetry, as was first demonstrated in 1977 by Freedman within \(\mathcal{N} = 1\) supergravity. There exists an alternative to the standard FI mechanism, which is reviewed in this conference paper. It is obtained by replacing the FI model with a manifestly gauge-invariant action such that its functional form is determined by two arbitrary real functions of a single complex variable. One of these functions generates a superconformal kinetic term for the vector multiplet, while the other yields a generalised FI term. Coupling such a vector multiplet model to supergravity does not require gauging of the \(R\)-symmetry. These generalised FI terms are consistently defined for any off-shell formulation for \(\mathcal{N} = 1\) supergravity, and are compatible with a supersymmetric cosmological term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the new minimal formulation [19] the FI term was described in [20].

  2. Since Deser and Zumino [9] made use of supergravity without auxiliary fields, it was next to impossible to construct a complete supergravity-Goldstino action in their setting.

  3. References [25] and [26] appeared in the arXiv within less than a month of each other.

  4. All relevant information concerning the supergravity covariant derivatives \({{\mathcal{D}}_{A}} = \left( {{{\mathcal{D}}_{a}},{{\mathcal{D}}_{\alpha }},{{{\bar {\mathcal{D}}}}^{{\dot {\alpha }}}}} \right)\) and the super-Weyl transformations (with the super-Weyl parameter \(\sigma \) being chiral, \(\mathop {\bar {\mathcal{D}}}\nolimits_{\dot {\alpha }} \sigma = 0\)) can be found in [27].

  5. The constraints (2.13) are invariant under local rescalings \(V \to {{{\text{e}}}^{\rho }}V\), with the parameter \(\rho \) being an arbitrary real scalar superfield. Requiring the action (2.15) to be stationary under such rescalings gives the constraint \(f\Upsilon V = - \tfrac{1}{2}V{{\mathcal{D}}^{\alpha }}{{\mathcal{W}}_{\alpha }} = \) \(\tfrac{1}{8}V{{\mathcal{D}}^{\alpha }}({{\bar {\mathcal{D}}}^{2}} - 4R){{\mathcal{D}}_{\alpha }}V\), where \(f = \xi g{\text{/}}h\). In conjunction with (2.13), this constraint defines the irreducible Goldstino multiplet introduced in [29].

REFERENCES

  1. I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, “The Volkov-Akulov-Starobinsky supergravity,” Phys. Lett. B 733, 32 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Dudas, S. Ferrara, A. Kehagias, and A. Sagnotti, “Properties of nilpotent supergravity,” J. High Energy Phys. 1509, 217 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. A. Bergshoeff, D. Z. Freedman, R. Kallosh, and A. van Proeyen, “Pure De Sitter supergravity,” Phys. Rev. D: Part. Fields 92, 085040 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Hasegawa and Y. Yamada, “Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity,” J. High Energy Phys. 1510, 106 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. M. Kuzenko, “Complex linear Goldstino superfield and supergravity,” J. High Energy Phys. 1510, 006 (2015).

  6. I. Antoniadis and C. Markou, “The coupling of non-linear supersymmetry to supergravity,” Eur. Phys. J. C 75, 582 (2015).

    Article  ADS  Google Scholar 

  7. I. Bandos, L. Martucci, D. Sorokin, and M. Tonin, “Brane induced supersymmetry breaking and De Sitter supergravity,” J. High Energy Phys. 1602, 080 (2016).

  8. D. Z. Freedman, “Supergravity with axial gauge invariance,” Phys. Rev. D: Part. Fields 15, 1173 (1977).

    Article  ADS  Google Scholar 

  9. S. Deser and B. Zumino, “Broken supersymmetry and supergravity,” Phys. Rev. Lett. 38, 1433 (1977).

    Article  ADS  Google Scholar 

  10. P. Fayet and J. Iliopoulos, “Spontaneously broken supergauge symmetries and Goldstone spinors,” Phys. Lett. B 51, 461 (1974).

    Article  ADS  Google Scholar 

  11. S. Ferrara and B. Zumino, “Supergauge invariant Yang-Mills theories,” Nucl. Phys. B 79, 413 (1974).

    Article  ADS  Google Scholar 

  12. D. V. Volkov and V. A. Soroka, “Higgs effect for Goldstone particles with spin 1/2,” JETP Lett. 18, 312 (1973).

    ADS  Google Scholar 

  13. P. K. Townsend, “Cosmological constant in supergravity,” Phys. Rev. D: Part. Fields 15, 2802 (1977).

    Article  ADS  Google Scholar 

  14. K. S. Stelle and P. C. West, “Relation between vector and scalar multiplets and gauge invariance in supergravity,” Nucl. Phys. B 145, 175 (1978).

    Article  ADS  Google Scholar 

  15. R. Barbieri, S. Ferrara, D. V. Nanopoulos, and K. S. Stelle, “Supergravity, R invariance and spontaneous supersymmetry breaking,” Phys. Lett. B 113, 219 (1982).

    Article  ADS  Google Scholar 

  16. J. Wess and B. Zumino, “Superfield lagrangian for supergravity,” Phys. Lett. B 74, 51 (1978).

    Article  ADS  Google Scholar 

  17. K. S. Stelle and P. C. West, “Minimal auxiliary fields for supergravity,” Phys. Lett. B 74, 330 (1978).

    Article  ADS  Google Scholar 

  18. S. Ferrara and P. van Nieuwenhuizen, “The auxiliary fields for supergravity,” Phys. Lett. B 74, 333 (1978).

    Article  ADS  Google Scholar 

  19. M. F. Sohnius and P. C. West, “An alternative minimal off-shell version of N = 1 supergravity,” Phys. Lett. B 105, 353 (1981).

    Article  ADS  Google Scholar 

  20. M. Sohnius and P. C. West, “The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity,” Nucl. Phys. B 198, 493 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Ferrara and P. van Nieuwenhuizen, “Tensor calculus for supergravity,” Phys. Lett. B 76, 404 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Siegel, “Solution to constraints in Wess-Zumino supergravity formalism,” Nucl. Phys. B 142, 301 (1978).

    Article  ADS  Google Scholar 

  23. U. Lindström and M. Roček, “Constrained local superfields,” Phys. Rev. D: Part. Fields 19, 2300 (1979).

    Article  ADS  Google Scholar 

  24. S. Ferrara, L. Girardello, T. Kugo, and A. van Proeyen, “Relation between different auxiliary field formulations of N=1 supergravity coupled to matter,” Nucl. Phys. B 223, 191 (1983).

    Article  ADS  Google Scholar 

  25. N. Cribiori, F. Farakos, M. Tournoy, and A. van Proeyen, “Fayet-Iliopoulos terms in supergravity without gauged R-symmetry,” J. High Energy Phys. 1804, 032 (2018).

  26. S. M. Kuzenko, “Taking a vector supermultiplet apart: Alternative Fayet–Iliopoulos-type terms,” Phys. Lett. B 781, 723 (2018).

    Article  ADS  Google Scholar 

  27. S. M. Kuzenko, “Superconformal vector multiplet self-couplings and generalised Fayet-Iliopoulos terms,” Phys. Lett. B 795, 37 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. M. Kuzenko, I. N. McArthur, and G. Tartaglino-Mazzucchelli, “Goldstino superfields in N = 2 supergravity,” J. High Energy Phys. 1705, 061 (2017).

  29. I. Bandos, M. Heller, S. M. Kuzenko, L. Martucci, and D. Sorokin, “The Goldstino brane, the constrained superfields and matter in N = 1 supergravity,” J. High Energy Phys. 1611, 109 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. I. Antoniadis, A. Chatrabhuti, H. Isono, and R. Knoops, “The cosmological constant in supergravity,” Eur. Phys. J. C 78, 718 (2018).

    Article  ADS  Google Scholar 

  31. Y. Aldabergenov, S. V. Ketov, and R. Knoops, “General couplings of a vector multiplet in supergravity with new FI terms,” Phys. Lett. B 785, 284 (2018).

    Article  ADS  Google Scholar 

  32. D. V. Volkov and V. P. Akulov, “Possible universal neutrino interaction,” JETP Lett. 16, 438 (1972); “Is the neutrino a Goldstone particle?,” Phys. Lett. B 46, 109 (1973).

    Article  ADS  Google Scholar 

  33. E. Ivanov and A. Kapustnikov, “General relationship between linear and nonlinear realisations of supersymmetry,” J. Phys. A 11, 2375 (1978); “The nonlinear realisation structure of models with spontaneously broken supersymmetry,” J. Phys. G 8, 167 (1982).

    Article  ADS  Google Scholar 

  34. S. M. Kuzenko and S. A. McCarthy, “On the component structure of N = 1 supersymmetric nonlinear electrodynamics,” J. High Energy Phys. 0505, 012 (2005).

  35. T. Kugo and S. Uehara, “Improved superconformal gauge conditions in the N = 1 supergravity Yang–Mills matter system,” Nucl. Phys. B 222, 125 (1983).

    Article  ADS  Google Scholar 

  36. W. Fischler, H. P. Nilles, J. Polchinski, S. Raby, and L. Susskind, “Vanishing renormalization of the D term in supersymmetric U(1) theories,” Phys. Rev. Lett. 47, 757 (1981).

    Article  ADS  Google Scholar 

  37. M. T. Grisaru and W. Siegel, “Supergraphity (II). Manifestly covariant rules and higher loop finiteness,” Nucl. Phys. B 201, 292 (1982).

    Article  ADS  Google Scholar 

  38. I. N. McArthur and T. D. Gargett, “A ‘gaussian’ approach to computing supersymmetric effective actions,” Nucl. Phys. B 497, 525 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  39. N. G. Pletnev and A. T. Banin, “Covariant technique of derivative expansion of the one-loop effective action,” Phys. Rev. D: Part. Fields 60, 105017 (1999).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

It is my pleasure to thank the organisers of the Workshop SQS’2019 for their warm hospitality in Yerevan. I am grateful to Darren Grasso and Ulf Lindström for comments on the manuscript. The research presented in this work was supported in part by the Australian Research Council, projects DP160103633 and DP200101944.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kuzenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzenko, S.M. Generalised Fayet–Iliopoulos Terms in Supergravity. Phys. Part. Nuclei Lett. 17, 639–644 (2020). https://doi.org/10.1134/S1547477120050234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120050234

Navigation