Skip to main content
Log in

The Spectrum of Quantum Gravity

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In this paper we consider the degrees of freedom beyond the graviton present in the effective field theory for quantum gravity. We point out that the position of the poles due to \({{R}^{2}}\) and \({{R}_{{\mu \nu }}}{{R}^{{\mu \nu }}}\) cannot be affected by operators that are higher order in curvature. On the other hand, operators of the type \(R\square R\) will lead to new poles while shifting the positions of the poles found at second order in curvature. New degrees of freedom can be identified either, as just described, by looking at the poles of the graviton propagator corrected by quantum gravity or by mapping the Jordan frame theory to the Einstein frame theory. While this procedure is very well defined for second order curvature terms in the effective action, we point out that higher order terms in curvature lead to a nonlinear and non-local relation between the propagating scalar degree of freedom and the Ricci scalar. We show how to resolve these ambiguities and how to obtain the correct action in the Einstein frame. We illustrate our results by looking at \(f(R)\) gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that models with this feature have been considered in e.g. [1417], whether quantum gravity truly leads to such resummable series is an open question.

REFERENCES

  1. S. Weinberg, in General Relativity. An Einstein Centenary Survey, Ed. by S. W. Hawking and W. Israel (Cambridge Univ. Press, Cambridge, 1979), p. 790.

    Google Scholar 

  2. J. F. Donoghue, Phys. Rev. D 50, 3874 (1994); gr-qc/9405057. https://doi.org/10.1103/PhysRevD.50.3874

    Article  ADS  Google Scholar 

  3. A. O. Barvinsky and G. A. Vilkovisky, “The generalized Schwinger-de Witt technique and the unique effective action in quantum gravity,” Phys. Lett. B 131, 313 (1983).

    Article  ADS  Google Scholar 

  4. A. O. Barvinsky and G. A. Vilkovisky, Phys. Rep. 119, 1 (1985). https://doi.org/10.1016/0370-1573(85)90148-6

    Article  ADS  MathSciNet  Google Scholar 

  5. A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger-Dewitt technique: converting loops into trees and In-In currents,” Nucl. Phys. B 282, 163 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second order in the curvature. General algorithms,” Nucl. Phys. B 333, 471 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, UK, 1992).

    Google Scholar 

  8. X. Calmet, Phys. Lett. B 787, 36 (2018); arXiv: 1810.09719 [hep-th]. https://doi.org/10.1016/j.physletb.2018.10.040

    Article  ADS  MathSciNet  Google Scholar 

  9. K. S. Stelle, Gen. Rel. Grav. 9, 353 (1978). https://doi.org/10.1007/BF00760427

    Article  ADS  Google Scholar 

  10. L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst, and A. Riotto, Fortsch. Phys. 64, 176 (2016); arXiv: 1505.07657 [hep-th]. https://doi.org/10.1002/prop.201500100

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Accioly, S. Ragusa, H. Mukai, and E.C. de Rey Neto, Int. J. Theor. Phys. 39 (2000) 1599–1608.

  12. G. ‘t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).

    ADS  Google Scholar 

  13. X. Calmet, Mod. Phys. Lett. A 29, 1 450 204 (2014); arXiv:1410.2807 [hep-th]. https://doi.org/10.1142/S0217732314502046

    Article  Google Scholar 

  14. T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012); arXiv:1110.5249 [gr-qc]. https://doi.org/10.1103/PhysRevLett.108.031101

    Article  ADS  Google Scholar 

  15. L. Modesto, Phys. Rev. D 86, 044005 (2012); arXiv: 1107.2403 [hep-th]. https://doi.org/10.1103/PhysRevD.86.044005

    Article  ADS  Google Scholar 

  16. E. T. Tomboulis, hep-th/9702146.

  17. I. L. Shapiro, Phys. Lett. B 744, 67 (2015); arXiv: 1502.00106 [hep-th]. https://doi.org/10.1016/j.physletb.2015.03.037

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Zwiebach, Phys. Lett. B 156, 315 (1985). https://doi.org/10.1016/0370-2693(85)91616-8

    Article  ADS  Google Scholar 

  19. S. Deser and A. N. Redlich, Phys. Lett. B 176, 350 (1986);

    Article  ADS  MathSciNet  Google Scholar 

  20. Phys. Lett. B 186, 461(E) (1987). https://doi.org/10.1016/0370-2693(86)90177-2

    Article  ADS  MathSciNet  Google Scholar 

  21. R. E. Kallosh, O. V. Tarasov and I. V. Tyutin, Nucl. Phys. B 137, 145 (1978). https://doi.org/10.1016/0550-3213(78)90055-X

    Article  ADS  Google Scholar 

  22. L. Modesto, L. Rachwa, and I. L. Shapiro, Eur. Phys. J. C 78, 555 (2018); arXiv:1704.03988 [hep-th]. https://doi.org/10.1140/epjc/s10052-018-6035-2

  23. J. D. Gonçalves, T. de Paula Netto, and I. L. Shapiro, Phys. Rev. D 97, 026015 (2018); arXiv:1712.03338 [hep-th] https://doi.org/10.1103/PhysRevD.97.026015

  24. X. Calmet and B. Latosh, Eur. Phys. J. C 78, 205 (2018); arXiv:1801.04698 [hep-th].https://doi.org/10.1140/epjc/s10052-018-5707-2

  25. X. Calmet, B. K. El-Menoufi, B. Latosh, and S. Mohapatra, Eur. Phys. J. C 78, 780 (2018); arXiv:1809.07606 [hep-th]. https://doi.org/10.1140/epjc/s10052-018-6265-3

  26. X. Calmet and B. K. El-Menoufi, Eur. Phys. J. C 77, 243 (2017); arXiv:1704.00261 [hep-th]. https://doi.org/10.1140/epjc/s10052-017-4802-0

  27. S. W. Hawking and T. Hertog, Phys. Rev. D 65, 103515 (2002); hep-th/0107088. https://doi.org/10.1103/PhysRevD.65.103515

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work of XC is supported in part by the Science and Technology Facilities Council (grant no. ST/P000819/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Calmet or B. Latosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier Calmet, Latosh, B. The Spectrum of Quantum Gravity. Phys. Part. Nuclei Lett. 16, 656–661 (2019). https://doi.org/10.1134/S1547477119060426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119060426

Navigation