Skip to main content
Log in

Magnetized Quark-Gluon Plasma at the LHC

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In QCD, the strengths of the large scale temperature dependent chromomagnetic, B3, B8, and usual magnetic, H fields spontaneously generated in quark-gluon plasma after the deconfinement phase transition (DPT), are estimated. The consistent at high temperature effective potential accounting for the oneloop plus daisy diagrams is used. The heavy ion collisions at the LHC and temperatures T not much higher than the phase transition temperature Td are considered. The critical temperature for the magnetized plasma is found to be Td (H) ∼ 110–120 MeV. This is essentially lower compared to the zero field value Td (H=0) ∼ 160–180 MeV usually discussed in the literature. Due to contribution of quarks, the color magnetic fields act as the sources generating H. The strengths of the fields are B3(T), B8(T) ∼ 1018–1019 G, H(T) ∼ 1016–1017 G for temperatures T ∼ 160–220 MeV. At temperatures T < 110–120 MeV the effective potential minimum value being negative approaches to zero. This is signaling the absence of the background fields and color confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Satz, “The fireball paradigm,” Lect. Notes Phys. 841, 1 (2012).

    Article  Google Scholar 

  2. J. Greensite, “An introduction to the confinement problem,” Lect. Notes Phys. 821 (2011).

    Google Scholar 

  3. O. K. Kalashnikov, “QCD at finite temperature,” Fortsch. Phys. 32, 525 (1984).

    Article  ADS  Google Scholar 

  4. G. S. Bali et al., “The QCD transition in external magnetic fields,” PoS(ConfinementX), 197 (2012).

    Google Scholar 

  5. L. Levkova and C. DeTar, “Quark-gluon plasma in an external magnetic field,” Phys. Rev. Lett. 112, 012002 (2014).

    Article  ADS  Google Scholar 

  6. K. Szabo, “QCD at non-zero temperature and external magnetic fields,” PoS(LATTICE2013), 014 (2014).

    Google Scholar 

  7. G. S. Bali, F. Bruckmann, G. Endrodi, and A. Schäfer, “Magnetization and pressures at nonzero magnetic fields in QCD,” PoS(LATTICE2013), 182 (2014).

    Google Scholar 

  8. D. Grasso and H. R. Rubinstein, “Magnetic fields in the early universe,” Phys. Rep. 348, 163–266 (2001).

    Article  ADS  Google Scholar 

  9. E. Elizalde and V. Skalozub, “Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot universe,” Eur. Phys. J. C 72, 1968 (2012).

    Article  ADS  Google Scholar 

  10. V. V. Skalozub and A. V. Strelchenko, “On the generation of abelian magnetic fields in SU(3) gluodynamics at high temperature,” Eur. Phys. J. C 33, 105 (2004).

    Article  ADS  Google Scholar 

  11. V. Skalozub, “Effective coupling constants in gauge theories at high temperature,” Int. J. Mod. Phys. A 11, 5643 (1996).

    Article  ADS  Google Scholar 

  12. V. Skalozub and M. Bordag, “Colour ferromagnetic vacuum state at finite temperature,” Nucl. Phys. B 576, 430 (2000).

    Article  ADS  Google Scholar 

  13. M. D. Pollock, “Magnetic fields and vacuum polarization at the Planck era,” Int. J. Mod. Phys. D 12, 1289 (2003).

    Article  ADS  Google Scholar 

  14. V. I. Demchik and V. V. Skalozub, “The spontaneous generation of magnetic fields at high temperature in a supersymmetric theory,” Eur. Phys. J. C 27, 601–607 (2003).

    Article  ADS  MATH  Google Scholar 

  15. J. I. Kapusta, Finite-Temperature Field Theory (Cambridge Univ. Press, Cambridge, 1989).

    MATH  Google Scholar 

  16. V. Demchik and V. Skalozub, “The spontaneous creation of a chromomagnetic field and A0-condensate at high temperature on a lattice,” J. Phys. A 41, 16405 (2008).

    Article  MATH  Google Scholar 

  17. A. I. Akhiezer and V. B. Berestetski, Quantum Electrodynamics (Nauka, Moscow, 1969; Wiley, New York, 1965).

    Google Scholar 

  18. S. Antropov, M. Bordag, V. Demchik and V. Skalozub, “Long range chromomagnetic fields at high temperature,” Int. J. Mod. Phys. A 26, 4831–4843 (2011).

    Article  ADS  MATH  Google Scholar 

  19. H. E. Haber and H. A. Weldon, “On the relativistic Bose-Einstein integrals,” J. Math. Phys. 23, 1852 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Demchik and V. Skalozub, “Spontaneous magnetization of a vacuum in the hot universe and intergalactic magnetic fields,” Phys. Part. Nucl. 46, 1–23 (2015).

    Article  Google Scholar 

  21. V. Skalozub and P. Minaiev, “On magnetization of quark-gluon plasma at the LHC experiment energies,” Visn. Dniprop. Univ., Fiz., Radioelektron. 24, 25 (2016); arXiv:1612.00216 [hep-ph].

    Google Scholar 

  22. A. O. Starinets, A. S. Vshivtsev, and V. Ch. Zhukovsky, “Colour ferromagnetic state in SU(2) gauge theory at finite temperature,” Phys. Lett. B 322, 40 (1994).

    Article  Google Scholar 

  23. N. O. Agasian and S. M. Fedorov, “Quark-hadron phase transition in a magnetic field,” Phys. Lett. B 663, 445 (2008).

    Article  ADS  Google Scholar 

  24. P. Cea, L. Cosmai, and M. D’Elia, “The QCD phase diagram for external magnetic fields,” J. High Energy Phys. 0712, 097 (2007).

    Article  ADS  Google Scholar 

  25. G. S. Bali et al., “The QCD phase diagram for external magnetic fields,” J. High Energy Phys. 1202, 044 (2012).

    Article  ADS  MATH  Google Scholar 

  26. B. V. Galilo and S. N. Nedelko, “Impact of strong electromagnetic field on the QCD effective potential for homogeneous abelian gluon field configurations,” Phys. Rev. D: Part. Fields 84, 094017 (2011).

    Article  ADS  Google Scholar 

  27. S. Ozaki, “QCD effective potential with strong U(l)lem magnetic fields,” Phys. Rev. D: Part. Fields 89, 054022 (2014).

    Article  ADS  Google Scholar 

  28. V. D. Orlovsky and Yu. A. Simonov, “The quark-hadron thermodynamics in magnetic field,” Phys. Rev. D: Part. Fields 89, 054012 (2014).

    Article  ADS  Google Scholar 

  29. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, and F. Sanfilippo, “Magnetic field effects on the static quark potential at zero and finite temperature,” Phys. Rev. D: Part. Fields 94, 094007 (2016).

    Article  ADS  Google Scholar 

  30. M. D’Elia, E. Meggiolaro, M. Mesiti, and F. Negro, “Gauge-invariant field-strength correlators for QCD in a magnetic background,” Phys. Rev. D: Part. Fields 93, 054017 (2016).

    Article  ADS  Google Scholar 

  31. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, and F. Sanfilippo, “Anisotropy of the quark-antiquark potential in a magnetic field,” Phys. Rev. D: Part. Fields 89, 114502 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Skalozub.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalozub, V., Minaiev, P. Magnetized Quark-Gluon Plasma at the LHC. Phys. Part. Nuclei Lett. 15, 568–575 (2018). https://doi.org/10.1134/S1547477118060171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118060171

Navigation