Skip to main content
Log in

Investigation of Rare Pion Decays with the PIBETA Spectrometer

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Experimental results on pion decays obtained with the PIBETA spectrometer at the Paul Scherrer Institute (PSI) are reviewed. For pion beta decay π+ → π0е+ν (πβ), a precision measurement of relative probability yields Г(πβ) = [1.036 ± 0.004(stat) ± 0.004(syst) ± 0.003(π+→е+ν)] × 10–8, which implies Vud = 0.9728(30) for the corresponding element of the Cabibbo–Kobayashi–Maskawa mixing matrix. Using a sample of 65 × 103 events, relative probability of the π+→е+νγ radiative pion decay (RPD) in the kinematic region of Eγ > 10 MeV and θ > 40° is measured as Bexp = 73.86(54) × 10–8. A statistical analysis of measured Ee+ and Eγ distributions for this decay yield the values FV = 0.0258(17) and FA = 0.0117(17) for the pion weak formfactors. Assuming that FV linearly depends on the е+ν invariant mass q2 as FV(q2) = FV(0)(1 + aq2), the slope parameter is extracted as а = 0.10(6). The pion polarizability and neutral-pion lifetime are estimated as αE = 2.78(10) × 10–4 fm3 and τ(π0) = (8.5 ± 1.1) × 10–17 s, respectively. The data for decays π+→ е+ ν and \({\mu ^ + } \to {e^ + }v\bar v\gamma \) have been collected and are being processed. The follow-up PEN experiment aims at reducing the uncertainty on the π+ → е+ ν relative probability by almost an order of magnitude (to 5 × 10–4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “A precise measurement of the π+ → π0 + e+ + ν decay rate,” Experiment at PSI R-89-01 (Paul Scherrer Inst., Villigen, 1989).

  2. https://doi.org/pibeta.phys.virginia.edu.

  3. E. Frlež et al. (PIBETA Collab.), “Design, commissioning and performance of the PIBETA detector at PSI,” Nucl. Instrum. Methods Phys. Res., Sect. A 526, 300–347 (2004).

    Article  ADS  Google Scholar 

  4. V. A. Baranov et al. (PIBETA Collab.), “The PIBETA spectrometer for studying rare and forbidden decays of muons and pions,” Instrum. Exp. Tech. 48, 168–176 (2005).

    Article  Google Scholar 

  5. C. L. Woody, P. W. Levy, J. A. Kierstead, T. Skwarnicki, Z. Sobolewski, M. Goldberg, N. Horwitz, P. Souder, and D. F. Anderson, “Readout techniques and radiation damage of undoped cesium iodide,” IEEE Trans. Nucl. Sci. 37, 492–499 (1990).

    Article  ADS  Google Scholar 

  6. E. Frlež, I. Supek, K. A. Assamagan, C. Bronnimann, T. Flugel, B. Krause, D. W. Lawrence, D. Mzavia, D. Pocanic, D. Renker, S. Ritt, P. L. Slocum, and N. Soic, “Cosmic muon tomography of pure cesium iodide calorimeter crystals,” Nucl. Instrum. Methods Phys. Res., Sect. A 440, 57–85 (2000).

    Article  ADS  Google Scholar 

  7. N. P. Kravchuk, “Cylindrical multiwire proportional chambers in physical experiments (JINR, PSI),” Phys. Part. Nucl. 25, 526–541 (1994).

    Google Scholar 

  8. V. V. Karpukhin, I. V. Kisel, A. S. Korenchenko, S. M. Korenchenko, N. P. Kravchuk, N. A. Kuchinsky, N. V. Khomutov, and S. Ritt, “Cylindrical multiwire proportional chambers for the PIBETA detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 418, 306–313 (1998).

    Article  ADS  Google Scholar 

  9. N. A. Kuchinskii, V. V. Sidorkin, and A. V. Solin, “A 32-channel CAMAC module for reading information from multiwire proportional chambers,” Instrum. Exp. Tech. 49, 805 (2008).

    Article  Google Scholar 

  10. PSI Users’ Guide: Accelerators Facilities (Paul Scherrer Inst., Villigen, 1994).

  11. N. Cabibbo, “Unitary Symmetry and Leptonic Decay,” Phys. Rev. Lett. 10, 531–532 (1963).

    Article  ADS  Google Scholar 

  12. R. P. Feynman and M. Gell-Mann, “Theory of the fermi interaction,” Phys. Rev. 109, 193–198 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Kobayashi and T. Maskawa, “CP-violation in the renormalizable theory of weak interaction,” Prog. Theor. Phys. 49, 652–657 (1973).

    Article  ADS  Google Scholar 

  14. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “An experimental estimate of the probability of β decay of the π+ meson,” Sov. Phys. JETP 15, 439–441 (1962)

    Google Scholar 

  15. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “Probability of the π+ → π0 + e+ + ν and π+ → γ + e+ + ν decays,” Sov. Phys. JETP 15, 985–987 (1962)

    Google Scholar 

  16. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “Check of the conserved vector current hypothesis,” Phys. Lett. 1, 138–140 (1962)

    Article  ADS  Google Scholar 

  17. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “Experimental evaluation of the π+→ π0/e+ν decay probability,” Nuovo Cimento 3, 1609–1613 (1962).

    Google Scholar 

  18. S. S. Gershtein and Ya. B. Zel’dovich, “On meson corrections in the theory of β decay,” Sov. Phys. JETP 2, 576–577 (1956).

    Google Scholar 

  19. P. Depommier, J. Heintze, C. Rubbia, and V. Soergel, “Further measurements of the π+ → π0 + e+ + ν decay rate,” Phys. Lett. A 5, 61–63 (1963).

    Article  Google Scholar 

  20. D. Bartlett, S. Devons, S. L. Meyer, and J. L. Rosen, “Measurement of the rates of the decay π+ → π0e+ν capture in LiH, CH2 and CH,” Phys. Rev. 136, B1452–B1463 (1964).

    Google Scholar 

  21. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “Beta-decay of pion,” Sov. Phys. JETP 20, 58–62 (1964).

    Google Scholar 

  22. W. K. Bertram, D. I. Meyer, and R. A. Carrigan, “Measurement of the branching ratio: R = [(π+ → π0e+ν)/(π+ → μ+ν)],” Phys. Rev. 139, B617–B625 (1965).

    Article  ADS  Google Scholar 

  23. R. B. Bacastow, C. Ghesquiere, C. E. Wiegand, and R. R. Larsen, “Measurement of pion beta-decay branching ratio,” Phys. Rev. B 139, B407–B418 (1965).

    Article  ADS  Google Scholar 

  24. P. P. Depommier, J. Duclos, J. Heintze, and K. Kleinknecht, “A measurement of the π+ → π0e+ν decay rate,” Nucl. Phys. B 4, 189–225 (1968).

    Article  ADS  Google Scholar 

  25. W. K. McFarlane, L. B. Auerbach, F. C. Gaille, V. L. Highland, E. Jastrzembski, R. J. Macek, F. H. Cverna, C. M. Hoffman, G. E. Hogan, R. E. Morgado, J. C. Pratt, and R. D. Werbeck, “Measurement of the rate for pion beta decay,” Phys. Rev. D: Part. Fields 32, 547–565 (1985).

    Article  ADS  Google Scholar 

  26. D. Počanić et al. (PIBETA Collab.), “Precise measurement of the π+ → π0e+ν,” Phys. Rev. Lett. 93, 181803(4) (2004).

    Article  ADS  Google Scholar 

  27. C. Patrignani et al., (Particle Data Group), “Review of particle physics,” Chin. Phys. C 40, 100001 (2016), 2017 update at https://doi.org/pdg.lbl.gov .

    Article  ADS  Google Scholar 

  28. A. Sher et al. (Collab. E865), “High statistics measurement of the K0 → π0e+ branching ratio,” Phys. Rev. Lett. 91, 261802(4) (2003).

    Google Scholar 

  29. P. Depommier, J. Heintze, C. Rubbia, and V. Soergel, “Further measurement on the decay π+ → e+νγ,” Phys. Lett. 7, 285–287 (1963).

    Article  ADS  Google Scholar 

  30. A. Stetz, J. Carroll, D. Ortendahl, V. Perez-Mendez, G. Igo, N. Chirapatpimol, and M. A. Nasser, “Determination of the axial form factor in the radiative decay of the pion,” Nucl. Phys. B 138, 285–318 (1978).

    Article  ADS  Google Scholar 

  31. A. Bay, D. Rugger, B. Gabioud, C. Joseph, J. F. Loude, J. P. Perroud, O. Schori, D. Steiner, M. T. Tran, L. van Elmbt, M. Lebrun, C. J. Martoff, and P. Truoel, “Measurement of the pion axial form factor from radiative decay,” Phys. Lett. B 174, 445–449 (1986).

    Article  ADS  Google Scholar 

  32. L. E. Piilonen, R. D. Bolton, M. D. Cooper, J. S. Frank, A. L. Hallin, P. Heusi, G. E. Hogan, C. M. Hoffman, F. G. Mariam, R. E. Mischke, V. D. Sandberg, R. A. Williams, S. L. Wilson, V. L. Highland, J. McDonough, et al., “Unique determination of the form factor ratio in radiative pion decay,” Phys. Rev. Lett. 57, 1402–1405 (1986).

    Article  ADS  Google Scholar 

  33. V. N. Bolotov et al. (Collab. ISTRA), “The experimental study of the π–→ e–νγ,” Phys. Lett. B 243, 308–311 (1990).

    Article  ADS  Google Scholar 

  34. E. Frlež et al. (PIBETA Collab.), “Precise measurement of the pion axial form factor in the π+ → e+νγ decay,” Phys. Rev. Lett. 93, 181804(4) (2004).

    Article  ADS  Google Scholar 

  35. M. Bychkov et al. (PIBETA Collab.), “New precise measurement of the pion weak form factors in π+ → e+ νγ decays,” Phys. Rev. Lett. 103, 051802(4) (2009).

    Google Scholar 

  36. D. A. Bryman, P. Depommier, and C. Leroy, “π → eν, π → eνγ decays and related processes,” Phys. Rep. 88, 151–205 (1982).

    Article  ADS  Google Scholar 

  37. A. A. Poblaguev, “On the π → eνγ decay sensivity to a tensor coupling in the effective quark-lepton interaction,” Phys. Lett. B 238, 108–111 (1990).

    Article  ADS  Google Scholar 

  38. P. Herczeg, “On the question of a tensor interaction in π+ → e+νγ decay,” Phys. Rev. D 49, 247–253 (1994).

    Article  ADS  Google Scholar 

  39. V. G. Vaks and B. L. Ioffe, “On π+ → e+νγ decay,” Nuovo Cimento 10, 342–351 (1958).

    Article  Google Scholar 

  40. R. P. Feynman and M. Gell-Mann, “Theory of fermi interaction,” Phys. Rev. 109, 193–198 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. B. R. Holstein, “Chiral symmetry and radiative pion decay,” Phys. Rev. D: Part. Fields 33, 3316–3320 (1986).

    Article  ADS  Google Scholar 

  42. J. Bijnens and P. Talavera, “π → lνγ form factors at two loop,” Nucl. Phys. B 489, 387–404 (1997).

    Article  ADS  Google Scholar 

  43. C. Q. Geng, I-Lin Ho, and T. H. Wu, “Axial vector form factors for Kl2γ and πl2γ at O(p6) in chiral perturbation theory,” Nucl. Phys. B 684, 281–317 (2004).

    Article  ADS  Google Scholar 

  44. H. Pichl and R. Unterdorfer, “On the radiative decay,” Eur. Phys. J. C 55, 273–283 (2008).

    Article  ADS  Google Scholar 

  45. “Study of the π →e+νγ decay anomaly,” Experiment at the PSI R-04-01 (Paul Scherrer Inst., Villigen, 2004).

  46. “GEANT: detector description and simulation tool,” CERN Program Library (Geneva, 1995).

  47. N. B. Skachkov, “On the predictions of dip-effect in Q2 dependence of electromagnetic and electroweak form factors of π-meson decay and their experimental verification,” arXiv:hep-ph/0206183.

  48. F. James and M. Roos, “MINUIT: function minimization and errors analysis,” CERN Program Library (Geneva, 1989).

    Google Scholar 

  49. J. F. Donoghue and B. R. Holstein, “Pion transitions and models of chiral symmetry,” Phys. Rev. D: Part. Fields 40, 2378–2388 (1989).

    Article  ADS  Google Scholar 

  50. M. V. Terent’ev, “Polarizability of the pion, virtual compton effect, and π → eνγ decay,” Sov. J. Nucl. Phys. 16, 87–93 (1973).

    Google Scholar 

  51. D. A. Bryman, “π → eν decay: window on the generation puzzle,” Comm. Nucl. Part. Phys. 21, 101–121 (1993).

    Google Scholar 

  52. W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchie, and L. C. R. Wijewardhana, “NuTeV anomaly, lepton universality, and nonuniversal neutrino gauge couplings,” Phys. Rev. D: Part. Fields 70, 113004–113026 (2004).

    Article  ADS  Google Scholar 

  53. A. Mosiero, R. Paradisi, and R. Petronzio, “Probing new physics through universality in K → Lν,” Phys. Rev. D: Part. Fields 74, 011701 (2006).

    Article  ADS  Google Scholar 

  54. https://doi.org/pen.phys.virginia.edu .

  55. https://doi.org/pienu.triumf.ca .

  56. A. Aguilar-Arevalo et al. (PiENu Collab.), “Improved measurement of the π → eν branching ratio,” Phys. Rev. Lett. 115, 071601(5) (2015).

  57. W. J. Marciano and A. Sirlin, “Radiative corrections to πl2 decays,” Phys. Rev. Lett. 71, 3629–3632 (1993).

    Article  ADS  Google Scholar 

  58. R. Decker and M. Finkemeier, “Short and long distance effects in the decay τ → πν (γ),” Nucl. Phys. B 438, 17–53 (1995).

    Article  ADS  Google Scholar 

  59. V. Cirigliano and I. Rosell, “Two-loop effective theory analysis of π(K) → [γ] branching ratios,” Phys. Rev. Lett. 99, 231801(4) (2007).

  60. D. I. Britton, S. Ahmad, D. A. Bryman, R. A. Burnbam, E. T. H. Clifford, P. Kitching, Y. Kuno, J. A. Macdonald, T. Numao, A. Olin, J.-M. Poutissou, and M. S. Dixit, “Measurement of the π+ → e+ ν branching ratio,” Phys. Rev. Lett. 68, 3000–3003 (1992).

    Article  ADS  Google Scholar 

  61. G. G. Czapek, A. Federspiel, A. Fluckiger, D. Frei, B. Hahn, C. Hug, E. Hugentobler, W. Krebs, U. Moser, and D. Muster, “Branching ratio for the rare pion decay into positron and neutrino,” Phys. Rev. Lett. 70, 17–20 (1993).

    Article  ADS  Google Scholar 

  62. H. L. Anderson, T. Fujii, and R. H. Miller, “Branching ratio of the electronic mode of positive pion decay,” Phys. Rev. 119, 2050–2067 (1960).

    Article  ADS  Google Scholar 

  63. E. di Capua, R. Garland, L. Pondrom, and A. Strelzoff, “Study of the decay π+ → e+ν,” Phys. Rev. 133, B1333–B1340 (1964).

    Google Scholar 

  64. D. A. Bryman, M. S. Dixit, R. Dubois, J. A. Macdonald, T. Numao, B. Olaniyi, A. Olin, and J. M. Poutissou, “Measurement of the π+→e+ν branching ratio,” Phys. Rev. D 33, 1211–1221 (1986).

    Article  ADS  Google Scholar 

  65. V. A. Baranov, M. A. Baturitskii, A. van der Schaaf, A. S. Korenchenko, S. M. Korenchenko, N. P. Kravchuk, N. A. Kuchinskiy, P. Robmann, V. V. Sidorkin, V. S. Smirnov, N. V. Khomutov, and S. N. Shkarovskiy, “Time-projection chamber for the PEN experiment,” Phys. Part. Nucl. Lett. 9, 168–171 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rozhdestvensky.

Additional information

Original Russian Text © D. Počanić, L.P. Alonzi, V.A. Baranov, W. Bertl, Yu.M. Bystritsky, M.A. Bychkov, E.P. Velicheva, V.P. Vol’nykh, V.A. Kalinnikov, T. Kozlowski, A.S. Korenchenko, S.M. Korenchenko, M. Korolija, N.P. Kravchuk, N.A. Kuchinsky, M. Lehman, D.A. Mzhavia, A. Palladino, P. Robmann, A.M. Rozhdestvensky, O.A. Rondon-Aramayo, I. Supek, P. Truöl, E. Frlež, N.V. Khomutov, Z. Tsamalaidze, A. van der Schaaf, 2018, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Počanić, D., Alonzi, L.P., Baranov, V.A. et al. Investigation of Rare Pion Decays with the PIBETA Spectrometer. Phys. Part. Nuclei Lett. 15, 610–620 (2018). https://doi.org/10.1134/S1547477118060158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118060158

Navigation