Skip to main content
Log in

Hard antineutrino source based on a lithium blanket: A version for the accelerator target

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The β-active 8Li isotope has a hard and well-defined antineutrino spectrum (E ν max= 13.0 MeV, E ν= 6.5 MeV) that ensures the reliable detection of the threshold reactions (ν e, p) and (ν e, d). An intense ν e source is proposed within a scheme comprising an accelerator with a neutron-producing target and a lithium blanket. The density analysis of 8Li production in this blanket shows that the mass of highly pure 7Li can be reduced to 100–200 kg, as compared to ~19.5 t in the option with metallic 7Li, and the size of the source can be decreased by a factor of ~2.5, which is important for the proposed short-base experiments on the search for sterile neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kopp, M. Maltoni, and T. Schwetz, “Are there sterile neutrinos at the eV scale?,” Phys. Rev. Lett. 107, 091801 (2011).

    Article  ADS  Google Scholar 

  2. A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Likhovid, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, and A. K. Skasyrskaya, “Upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data,” JETP Lett. 97, 67–69 (2013).

    Article  ADS  Google Scholar 

  3. D. S. Gorbunov, “Sterile neutrinos and their role in particle physics and cosmology,” Phys. Usp. 57, 503 (2014).

    Article  ADS  Google Scholar 

  4. M. Maltoni and T. Schwetz, “Sterile neutrino oscillations after first MiniBooNE results,” Phys. Rev. D: Part. Fields 76, 093005 (2007).

    Article  ADS  Google Scholar 

  5. J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz, and J. Spitz, “Sterile neutrino fits to short baseline neutrino oscillation measurements,” arXiv:1207.4765[hep-ex].

  6. N. Yu. Zysina, S. V. Fomichev, and V. V. Khruschov, “Mass properties of active and sterile neutrinos in a phenomenological (3 + 1 + 2) model,” Phys. At. Nucl. 77, 890–900 (2014).

    Article  Google Scholar 

  7. V. G. Aleksankin et al., Beta and Antineutrino Radiation of Fission Fragments (TsNIIatominform, Moscow, 1986) [in Russian].

    Google Scholar 

  8. V. I. Lyashuk and Yu. S. Lutostansky, “Intense antineutrino source based on a lithium converter. Proposal for a promising experiment for studying oscillations,” JETP Lett. 103, 293 (2016).

    Article  ADS  Google Scholar 

  9. V. A. Korovkin, S. A. Kodanev, A. D. Yarichin, A. A. Borovoi, V. I. Kopeikin, L. A. Mikaelyan, and V. D. Sidorenko, “Measurement of burnup of nuclear fuel in a reactor by neutrino emission,” Sov. At. Energy 56, 233 (1984).

    Article  Google Scholar 

  10. S. Nakamura, T. Sato, S. Ando, T.-S. Park, F. Myhrer, V. Gudkov, and K. Kubodera, “Neutrino-deuteron reactions at solar neutrino energies,” arXiv:nuclth/0201062v3. http://www-nuclth.phys.sci.osakau. ac.jp/top/Netal/index.html.

  11. V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev, “Reactor as a source of antineutrinos thermal fission energy,” Phys. At. Nucl. 67, 1892–1899 (2004).

    Article  Google Scholar 

  12. F. Ya. Ovchinnikov and V. V. Semenov, Exploitation Regimes of Water-Water Power Reactors (Energoatomizdat, Moscow, 1988), pp. 142–145 [in Russian].

    Google Scholar 

  13. V. I. Kopeikin, “Flux and spectrum of reactor antineutrinos,” Phys. At. Nucl. 75, 143–152 (2012).

    Article  Google Scholar 

  14. P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Phys. Rev. C 84, 024617 (2011).

    Article  ADS  Google Scholar 

  15. Th. A. Mueller, D. Lhuillier, M. Fallot, et al., “Improved predictions of reactor antineutrino spectra,” Phys. Rev. C 83, 054615 (2011).

    Article  ADS  Google Scholar 

  16. A. C. Hayes, J. P. Friar, G. T. Garvey, et al., “Systematic uncertainties in the analysis of the reactor neutrino anomaly,” Phys. Rev. Lett. 112, 202501 (2014).

    Article  ADS  Google Scholar 

  17. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, “Determination of the antineutrino spectrum from 235U thermal neutron fission products up 9.5MeV,” Phys. Lett. B 160, 325 (1985).

    Article  ADS  Google Scholar 

  18. A. A. Hahn, K. Schreckenbach, W. Gelletly, et al., “Antineutrino spectra from 241Pu and 239Pu thermal neutron fission products,” Phys. Lett. B 218, 365 (1989).

    Article  ADS  Google Scholar 

  19. N. Haag, A. Gutlein, M. Hofmann, et al., “Experimental determination of the antineutrino spectrum of the fission products of 238U,” Phys. Rev. Lett. 112, 122501 (2014).

    Article  ADS  Google Scholar 

  20. V. I. Lyashuk and Yu. S. Lutostansky, “Intensive neutrino source on the base of lithium converter,” arXiv:1503.01280v2[physics.ins-det].

  21. N. G. Basov and V. B. Rozanov, “Possibility of developing an intense neutrino source,” JETP Lett. 42, 431 (1985).

    ADS  Google Scholar 

  22. L. A. Mikaelyan, P. E. Spivak, and V. G. Tsinoev, “A proposal for experiments in low energy antineutrino physics,” Sov. J. Nucl. Phys. 1, 611 (1965).

    Google Scholar 

  23. Yu. S. Lyutostansky and V. I. Lyashuk, “The Lithium converter of the reactor neutrons to antineutrino. I. The static regime of operation,” Preprint ITEP-66 (TsNIIatominform, Moscow, 1989). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/21/083/21083887.pdf?r=1.

    Google Scholar 

  24. Yu. S. Lyutostansky and V. I. Lyashuk, “Powerful hardspectrum neutrino source based on lithium converter of reactor neutrons to antineutrinos,” Nucl. Sci. Eng. 117, 77–87 (1994).

    Google Scholar 

  25. Yu. S. Lutostansky and V. I. Lyashuk, “The concept of a powerful antineutrino source,” Bull. Russ. Acad. Sci.: Phys. 75, 468 (2011).

    Article  MATH  Google Scholar 

  26. R. Reister, “The nuclear power industry and Li-7,” in Proceedings of the 2013 Workshop on Isotope Federal Supply and Demand, Rockville, Maryland, Plaza III, September 19, 2013. http://science.energy.gov/np/community-resources/workshops/2013-workshop-on-isotopefederal-supply-and-demand/agenda/. http://science.energy.gov/~/media/np/pdf/workshops/workshop-onisotope-federal-supply-and-demand-2013/presentations/Reister_LITHIUM-7_SUPPLY.pdf.

    Google Scholar 

  27. T. Ault, K. Brozek, L. Fan, M. Folson, J. Kim, and J. Zeismer, “Lithium isotope enrichment: feasible domestic enrichment alternatives -2012,” Tech. Rep. UCBTH-12-005 (Dept. Nucl. Eng., Univ. California, Berkeley, 2012). http://fhr.nuc.berkeley. edu/wpcontent/uploads/2014/10/12-005_NE-170_Lithium-Enrichment.pdf.

    Google Scholar 

  28. www.nccp.ru/products/lithium-7/.

  29. www.tianqilithium.com/en/about.aspx?t=49.

  30. Yu. S. Lutostansky and V. I. Lyashuk, “Antineutrino spectrum from powerful reactor and neutrino converter system,” Phys. Part. Nucl. Lett. 2, 226 (2005).

    Google Scholar 

  31. Yu. Ya. Stavissky, “Giant pulses of thermal neutrons in large accelerator beam dumps. Possibilities for experiments,” Phys. Usp. 49, 1253 (2006).

    Article  ADS  Google Scholar 

  32. V. I. Lyashuk and Yu. S. Lutostansky, “An intense neutrino source based on the 7Li isotope: reactor and accelerator design,” Bull. Russ. Acad. Sci.: Phys. 79, 431 (2015).

    Article  Google Scholar 

  33. Yu. S. Lyutostanskii and V. I. Lyashuk, “Reactor neutrons-antineutrino converter on the basis of lithium compounds and their solutions,” At. Energy 69, 696–699 (1990). doi: 10.1007/BF02046355

    Article  Google Scholar 

  34. A. Bungau, A. Adelmann, J. R. Alonso, W. Barletta, R. Barlow, L. Bartoszek, L. Calabretta, A. Calanna, D. Campo, J. M. Conrad, Z. Djurcic, Y. Kamyshkov, M. H. Shaevitz, I. Shimizu, T. Smidt, et al., “Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay,” Phys. Rev. Lett. 109, 141802 (2012).

    Article  ADS  Google Scholar 

  35. A. Adelmann, J. R. Alonso, W. Barletta, et al., “Costeffective design options for IsoDAR,” arXiv:1210. 4454v1[physics.acc-ph].

  36. A. E. Aksent’ev, K. A. Aliev, I. A. Ashanin, Yu. A. Bashmakov, A. A. Blinnikov, T. V. Bondarenko, O. L. Verzhbitskii, M. A. Gusarova, A. N. Didenko, M. S. Dmitriev, V. V. Dmitrieva, V. S. Dyubkov, V. L. Zvyagintsev, A. V. Ziyatdinova, A. A. Kalashnikova, et al., “Conceptual development of a 600–1000 MeV proton beam accelerator-driver with average beam power >1 MW,” At. Energy 117, 270 (2014).

    Article  Google Scholar 

  37. Z. Djurcic et al. (JUNO Collab.), arXiv:1508.07166v2.

  38. A. A. Borovoi and S. Kh. Khakimov, Neutrino Experiments Using Nuclear Reactors (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  39. MCNPX™ User’s Manual, Ed. by L. S. Waters, LANL Rep. TPO-E83-G-UG-X-00001 (Los Alamos Natl. Labor., Los Alamos, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lyashuk.

Additional information

Original Russian Text © V.I. Lyashuk, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashuk, V.I. Hard antineutrino source based on a lithium blanket: A version for the accelerator target. Phys. Part. Nuclei Lett. 14, 465–473 (2017). https://doi.org/10.1134/S154747711703013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711703013X

Navigation