Skip to main content
Log in

An intense neutrino source based on the 7Li isotope: Reactor and accelerator design

  • Proceedings of the LXIV International Conference “Nuclei 2014: Fundamental Problems and Applications of Nuclear Physics, from Nanotechnology to Space” (LXIV International Meeting on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The creation of an intense antineutrino source with a hard \(\tilde \nu _e\) spectrum based on the reaction of activation by 7Li(n, γ)8Li is proposed. When decaying, the resulting β active 8Li isotope, emits a hard \(\tilde \nu _e\) spectra with E ν up to 13 MeV at an average energy of ∼6.5 MeV. This \(\tilde \nu _e\) source can be created on the basis of a nuclear reactor with a high-purity 7Li blanket. Stationary and dynamic modes are possible when lithium are pumped in the closed cycle through the bulk reservoir (lithium converter) near the active reactor zone and then to the distant \(\tilde \nu _e\) detector. The accelerated development of a \(\tilde \nu _e\) source in a setup based on a combination of an accelerator and a neutron-producing target inside a lithium converter is also considered. A tungsten target on a proton accelerator with energies of up to 300 MeV is discussed as well. The results from calculating the neutron yield from the target and the formation of 8Li and a \(\tilde \nu _e\) flux are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakashita, K., Proc. 36th Int. Conf. on High Energy Physics, Melbourne, July 4–11, 2012.

    Google Scholar 

  2. Adamson, P., Auty, D.J., Ayres, D.S., et al., (MINOS Collab.), Phys. Rev. Lett., 2011, vol. 107, p. 181802.

    Article  ADS  Google Scholar 

  3. Abe, Y., Aberle, C., Anjos, J.C., et al., (Double Chooz Collab.), Phys. Rev. D, 2012, vol. 86, p. 052008.

    Article  ADS  Google Scholar 

  4. An, F.P., Bai, J.Z., Balantekin, A.B., et al., Phys. Rev. Lett., 2012, vol. 108, p. 171803; arXiv:1203.1669v2 [hep-ex] 2 Apr 2012.

    Article  ADS  Google Scholar 

  5. Ahn, J.K., Chebotaryov, S., Choi, J.H., et al., (RENO Collab.), Phys. Rev. Lett., 2012, vol. 108, p. 191802.

    Article  ADS  Google Scholar 

  6. Aguilar, A., et al., (LSND Collab.), Phys. Rev. D: Part. Fields, 2001, vol. 64, p. 112007; arXiv:hep-ex/0104049v3.

    Article  ADS  Google Scholar 

  7. Aguilar-Arevalo, A.A., et al., (The MiniBooNE Collab.), Phys. Rev. Lett., 2010, vol. 105, p. 181801.

    Article  ADS  Google Scholar 

  8. Abdurashitov, J.N., et al., Phys. Rev. C, 2009, vol. 80, p. 015807.

    Article  ADS  Google Scholar 

  9. Giunti, C. and Laveder, M., Phys. Rev. C, 2011, vol. 83, p. 065504; arXiv:1006.3244v3 [hep-ph].

    Article  ADS  Google Scholar 

  10. Mention, G., Fechner, M., Lasserre, T., et al., Phys. Rev. D: Part. Fields, 2011, vol. 83, p. 073006.

    Article  ADS  Google Scholar 

  11. Kopp, J., Maltoni, M., and Schwetz, T., Phys. Rev. Lett., 2011, vol. 107, p. 091801; arXiv:1103.4570v2 [hep-ph].

    Article  ADS  Google Scholar 

  12. Maltoni, M. and Schwetz, T., Phys. Rev. D: Part. Fields, 2007, vol. 76, p. 093005; arXiv:0705.0107v3 [hep-ph] 2 Oct 2007.

    Article  ADS  Google Scholar 

  13. Conrad, J., Ignarra, C., Karagiorgi, G., et al., arXiv: 1207.4765v1 [hep-ex].

  14. Zysina, N.Yu., Fomichev, S.V., and Khruschov, V.V., Phys. Atom. Nucl., 2014, vol. 77, p. 890.

    Article  ADS  Google Scholar 

  15. Kopeikin, V.I., Phys. Atom. Nucl., 2012, vol. 75, p. 143.

    Article  ADS  Google Scholar 

  16. Schreckenbach, K., Colvin, G., Gelletly, W., and von Feilitzsch, F., Phys. Lett. B, 1985, vol. 160, p. 325.

    Article  ADS  Google Scholar 

  17. Hahn, A.A., Schreckenbach, K., Gelletly, W., et al., Phys. Lett. B, 1989, vol. 218, p. 365.

    Article  ADS  Google Scholar 

  18. Haag, N., Gutlein, A., Hofmann, M., et al., Phys. Rev. Lett., 2014, vol. 112, p. 122501.

    Article  ADS  Google Scholar 

  19. Kuvshinnikov, A.A., Mikaelyan, L.A., Nikolaev, S.V., et al., Sov. J. Nucl. Phys., 1990, vol. 52, p. 300.

    Google Scholar 

  20. Kopeikin, V.I., Mikaelyan, L.A., and Sinev, V.V., Phys. Atom. Nucl., 2004, vol. 67, p. 1892.

    Article  ADS  Google Scholar 

  21. Huber, P., Phys. Rev. C, 2011, vol. 84, p. 024617.

    Article  ADS  Google Scholar 

  22. Mueller, Th.A., Lhuillier, D., Fallot, M., et al., Phys. Rev. C, 2011, vol. 83, p. 054615.

    Article  ADS  Google Scholar 

  23. Hayes, A.C., Friar, J.P., Garvey, G.T., et al., Phys. Rev. Lett., 2014, vol. 112, p. 202501.

    Article  ADS  Google Scholar 

  24. Von Feilitzsch, F., Hahn, A., and Schreckenbach, K., Phys. Lett. B, 1982, vol. 118, p. 162.

    Article  ADS  Google Scholar 

  25. Lyutostansky, Yu.S. and Lyashuk, V.I., Lithium converter of the reactor neutrons to antineutrino. I. The static regime of the operation, Preprint ITEP, Moscow, 1989, no. 66.

    Google Scholar 

  26. Mikaelian, L.A., Spivak, P.E., and Tsinoev, V.G., Nucl. Phys., 1965, vol. 70, p. 574.

    Article  Google Scholar 

  27. Feinberg, S.M. and Shevelev, Y.V., Proc. Int. Conf. Peaseful Use of Atomic Energy, New York: United Nations, 1965, vol. 7, p. 455.

    Google Scholar 

  28. Lyutostansky, Yu.S. and Lyashuk, V.I., Nucl. Sci. Eng., 1994, vol. 117, p. 77.

    Google Scholar 

  29. Lyutostansky, Yu.S. and Lyashuk, V.I., Lithium converter of the reactor neutrons to antineutrino. III. The converter on the basis of lithium-deuterium solutions and compounds, Preprint of ITEP, Moscow, 1989, no. 147.

    Google Scholar 

  30. Lyutostansky, Yu.S. and Lyashuk, V.I., Sov. J. Atom. Energy, 1991, vol. 69, p. 696.

    Article  Google Scholar 

  31. Lyutostansky, Yu.S. and Lyashuk, V.I., Lithium converter of the reactor neutrons to antineutrino. II. The dynamic regime of the operating, Preprint of ITEP, Moscow, 1989, no. 82.

    Google Scholar 

  32. Lyashuk, V.I. and Lyutostansky, Yu.S., The conception of the powerful dynamic neutrino source with modifiable hard spectrum, Preprint of ITEP, Moscow, 1997, no. 38.

    Google Scholar 

  33. Lyutostansky, Yu.S. and Lyashuk, V.I., Phys. Atom. Nucl., 2000, vol. 63, p. 1288.

    Article  ADS  Google Scholar 

  34. Lyutostansky, Yu.S. and Lyashuk, V.I., Proc. Int. Conf. on Neutron Physics, Kiev: Sept. 14–18, 1987, Moscow: Atominform, 1988, vol. 4, p. 182.

    Google Scholar 

  35. Lutostansky, Yu.S. and Lyashuk, V.I., Phys. Part. Nucl. Lett., 2005, vol. 2, p. 226.

    Google Scholar 

  36. Lutostansky, Yu.S. and Lyashuk, V.I., Bull. Russ. Acad. Sci. Phys., 2011, vol. 75, p. 468.

    Article  MATH  Google Scholar 

  37. Stavissky, Yu.Ya., Usp. Fiz. Nauk, 2006, vol. 176, p. 1283.

    Article  Google Scholar 

  38. Lutostansky, Yu.S. and Lyashuk, V.I., The possible neutron sources for the neutrino factory (review), Preprint of ITEP, Moscow, 2007, no. 12.

    Google Scholar 

  39. MCNPXTM Users Manual, Waters, L.S., Ed., TPO-E83-G-UG-X-00001.

  40. Barashenkov, V.S., Kumavat, H., Lobanova, V.A., and Stetsenko, S.G., Phys. Part. Nucl. Lett., 2005, vol. 2, p. 230.

    Google Scholar 

  41. Dementyev, A.V., Sobolevsky, N.M., and Stavissky, Yu.Ya., Nucl. Instrum. Methods A, 1996, vol. 374, p. 70.

    Article  ADS  Google Scholar 

  42. Ryabov, Yu.V., Matushko, G.K., and Slastnikov, V.N., Z. Phys. A, 1983, vol. 311, p. 363.

    Article  ADS  Google Scholar 

  43. Tunnicliffe, P.R., Chidley, B.G., and Fraser, J.S., Proc. Int. Conf. on Proton Linear Accelerator, Chalk River, Sept. 14–17, 1976, p. 36.

    Google Scholar 

  44. Barashenkov, V.S., Fiz. Elem. Chastits At. Yadra, 1978, vol. 9, p. 871.

    Google Scholar 

  45. Bungau, A., Adelmann, A., Alonso, J.R., et al., Phys. Rev. Lett., 2012, vol. 109, p. 141802.

    Article  ADS  Google Scholar 

  46. Bungau, A., Barlow, R., Shaevitz, M., et al., Target studies for the production of lithium8 for neutrino physics using a low energy cyclotron, May, 25, 2012. arXiv: 1205.5790v1 [phys.ac-ph].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lyashuk.

Additional information

Original Russian Text © V.I. Lyashuk, Yu.S. Lutostansky, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 4, pp. 472–477.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashuk, V.I., Lutostansky, Y.S. An intense neutrino source based on the 7Li isotope: Reactor and accelerator design. Bull. Russ. Acad. Sci. Phys. 79, 431–436 (2015). https://doi.org/10.3103/S106287381504022X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381504022X

Keywords

Navigation