Skip to main content
Log in

Renormalization-group improved inflationary scenarios

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XX. Constraints on inflation,” arXiv:1502.02114.

  2. B. L. Spokoiny, “Inflation and generation of perturbations in broken symmetric theory of gravity,” Phys. Lett. B 147, 39–43 (1984)

    Article  ADS  Google Scholar 

  3. T. Futamase and K.-I.Maeda, “Chaotic inflationary scenario in models having nonminimal coupling with curvature,” Phys. Rev. D 39, 399–404 (1989)

    Article  ADS  Google Scholar 

  4. R. Fakir and W. G. Unruh, “Improvement on cosmological chaotic inflation through nonminimal coupling,” Phys. Rev. D 41, 1783–1791 (1990)

    Article  ADS  Google Scholar 

  5. A. O. Barvinsky and A. Yu. Kamenshchik, “Quantum scale of inflation and particle physics of the early universe,” Phys. Lett. B 332, 270 (1994), arXiv:gr-qc/9404062

    Article  ADS  Google Scholar 

  6. M. V. Libanov, V. A. Rubakov, and P. G. Tinyakov, “Cosmology with nonminimal scalar field: graceful entrance into inflation,” Phys. Lett. B 442, 63 (1998), arXiv:hep-ph/9807553

    Article  ADS  Google Scholar 

  7. A. Cerioni, F. Finelli, A. Tronconi, and G. Venturi, “Inflation and reheating in induced gravity,” Phys. Lett. B 681, 383–386 (2009), arXiv:0906.1902

    Article  ADS  Google Scholar 

  8. M. B. Einhorn and D. R. T. Jones, “GUT scalar potentials for Higgs inflation,” J. Cosmol. Astropart. Phys. 1211, 049 (2012), arXiv:1207.1710

    Article  ADS  Google Scholar 

  9. F. Bezrukov and D. Gorbunov, “Light inflaton after LHC8 and WMAP9 results,” J. High Energy Phys. 1307, 140 (2013), arXiv:1303.4395

    Article  ADS  Google Scholar 

  10. R. Kallosh, A. Linde, and D. Roest, “The double attractor behavior of induced inflation,” J. High Energy Phys. 1409, 062 (2014), arXiv:1407.4471

    Article  ADS  Google Scholar 

  11. M. Rinaldi, L. Vanzo, S. Zerbini, and G. Venturi, “Inflationary quasi-scale invariant attractors,” Phys. Rev. D 93, 024040 (2016), arXiv:1505.03386.

    Article  ADS  MathSciNet  Google Scholar 

  12. F. L. Bezrukov and M. Shaposhnikov, “The Standard Model Higgs boson as the inflaton,” Phys. Lett. B 659, 703 (2008), arXiv:0710.3755

    Article  ADS  Google Scholar 

  13. A. O. Barvinsky, A. Y. Kamenshchik, and A. A. Starobinsky, “Inflation scenario via the Standard Model Higgs boson and LHC,” J. Cosmol. Astropart. Phys. 0811, 021 (2008), arXiv:0809.2104

    Article  ADS  Google Scholar 

  14. F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, “On initial conditions for the Hot Big Bang,” J. Cosmol. Astropart. Phys. 0906, 029 (2009), arXiv:0812.3622

    Article  ADS  Google Scholar 

  15. A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Asymptotic freedom in inflationary cosmology with a nonminimally coupled Higgs field,” J. Cosmol. Astropart. Phys. 0912, 003 (2009), arXiv:0904.1698

    Article  ADS  Google Scholar 

  16. F. L. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov, “Higgs inflation: consistency and generalisations,” J. High Energy Phys. 1101, 016 (2011), arXiv:1008.5157

    Article  ADS  MATH  Google Scholar 

  17. A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Higgs boson, renormalization group, and cosmology,” Eur. Phys. J. C 72, 2219 (2012), arXiv:0910.1041

    Article  ADS  Google Scholar 

  18. F. Bezrukov, “The Higgs field as an inflaton,” Class. Quantum Grav. 30, 214001 (2013), arXiv:1307.0708.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. de Simone, M. P. Hertzberg, and F. Wilczek, “Running inflation in the standard model,” Phys. Lett. B 678, 1 (2009), arXiv:0812.4946.

    Article  ADS  Google Scholar 

  20. P. Binetruy, E. Kiritsis, J. Mabillard, M. Pieroni, and C. Rosset, “Universality classes for models of inflation,” J. Cosmol. Astropart. Phys. 1504, 033 (2015); arXiv:1407.0820

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Pieroni, “ß-function formalism for inflationary models with a non minimal coupling with gravity,” J. Cosmol. Astropart. Phys. 1602, 012 (2016), arXiv:1510.03691.

    Article  ADS  MathSciNet  Google Scholar 

  22. N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de sitter space-time,” Ann. Poincare Phys. Theor. A 9, 109 (1968)

    MathSciNet  MATH  Google Scholar 

  23. E. A. Tagirov, “Consequences of field quantization in de Sitter type cosmological models,” Ann. Phys. 76, 561 (1973).

    Article  ADS  Google Scholar 

  24. C. G. Callan, S. R. Coleman, and R. Jackiw, “A new improved energy-momentum tensor,” Ann. Phys. 59, 42 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, UK, 1982).

    Book  MATH  Google Scholar 

  26. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (Inst. Phys., Bristol, Philadelphia, 1992)

    Google Scholar 

  27. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, “Renormalization group approach to quantum field theory in curved space-time,” Riv. Nuovo Cim., Ser. 3 12 (10), 1–112 (1989).

    Article  MathSciNet  Google Scholar 

  28. E. Elizalde and S. D. Odintsov, “Renormalization group improved effective potential for gauge theories in curved space-time,” Phys. Lett. B 303, 240 (1993), arXiv:hep-th/9302074

    Article  ADS  Google Scholar 

  29. E. Elizalde and S. D. Odintsov, “Renormalization group improved effective lagrangian for interacting theories in curved space-time,” Phys. Lett. B 321, 199 (1994); arXiv:hep-th/9311087.

    Article  ADS  Google Scholar 

  30. E. Elizalde and S. D. Odintsov, “Renormalization group improved effective potential for finite grand unified theories in curved space-time,” Phys. Lett. B 333, 331 (1994), arXiv:hep-th/9403132.

    Article  ADS  Google Scholar 

  31. E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Renormalization-group inflationary scalar electrodynamics and SU(5) scenarios confronted with Planck2013 and BICEP2 results,” Phys. Rev. D 90, 084001 (2014), arXiv:1408.1285.

    Article  ADS  Google Scholar 

  32. E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Cosmological attractor inflation from the RG-improved higgs sector of finite gauge theory,” J. Cosmol. Astropart. Phys. 1602, 025 (2016), arXiv:1509.08817.

    Article  ADS  Google Scholar 

  33. T. Inagaki, R. Nakanishi, and S. D. Odintsov, “Inflationary parameters in renormalization group improved f4 theory,” Astrophys. Space Sci. 354, 2108 (2014), arXiv:1408.1270

    Article  Google Scholar 

  34. T. Inagaki, R. Nakanishi, and S. D. Odintsov, “Non-minimal two-loop inflation,” Phys. Lett. B 745, 105 (2015), arXiv:1502.06301.

    Article  ADS  MATH  Google Scholar 

  35. A. Yu. Kamenshchik, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Reconstruction of scalar potentials in modified gravity models,” Phys. Rev. D 87, 063503 (2013), arXiv:1211.6272

    Article  ADS  Google Scholar 

  36. E. O. Pozdeeva and S. Yu. Vernov, “Stable exact cosmological solutions in induced gravity models,” AIP Conf. Proc. 1606, 48 (2014), arXiv:1401.7550.

    Article  ADS  Google Scholar 

  37. D. I. Kaiser, “Induced-gravity inflation and the density perturbation spectrum,” Phys. Lett. B 340, 23–28 (1994), arXiv:astro-ph/9405029

    Article  ADS  Google Scholar 

  38. D. I. Kaiser, “Primordial spectral indices from generalized Einstein theories,” Phys. Rev. D 52, 4295 (1995), arXiv:astroph/9408044.

    Article  ADS  Google Scholar 

  39. M. A. Skugoreva, A. V. Toporensky, and S. Yu. Vernov, “Global stability analysis for cosmological models with nonminimally coupled scalar fields,” Phys. Rev. D 90, 064044 (2014), arXiv:1404.6226.

    Article  ADS  Google Scholar 

  40. A. R. Liddle, P. Parsons, and J. D. Barrow, “Formalizing the slow roll approximation in inflation,” Phys. Rev. D 50, 7222 (1994), arXiv:astro-ph/9408015.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Pozdeeva.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdeeva, E.O., Vernov, S.Y. Renormalization-group improved inflationary scenarios. Phys. Part. Nuclei Lett. 14, 386–389 (2017). https://doi.org/10.1134/S1547477117020273

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020273

Navigation