Skip to main content
Log in

Two-body atomic system in a one-dimensional anharmonic trap: The energy spectrum

  • Physics of elementary particles and atomic nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We numerically investigate the following two-body stationary Schrödinger equation (SE): \(\left\{ { - \frac{{{{\rlap{--} h}^2}}}{{2m}}\frac{\partial }{{x_1^2}} - \frac{{{{\rlap{--} h}^2}}}{{2m}}\frac{\partial }{{x_2^2}} + V\left( {{x_2}} \right) + g\partial \left( {{x_1} - {x_2}} \right)} \right\}x\Psi \left( {{x_1},{x_2}} \right) = E\Psi \left( {{x_1},{x_2}} \right),\) where \({x_1},{x_2} \in \mathbb{R},V\left( {{x_1}} \right) = {V_0}{\sin ^2}\left( {{k_x}{x_i}} \right)\) is the potential describing the interaction of atoms with a trap and (x 1x 2) is the interatomic potential. Previously, a similar problem has been solved analytically for the harmonic interaction \({V_h}\left( {{x_i}} \right) = \frac{1}{2}m\omega x_i^2\) with the trap, which leads to the separation of coordinates \(y = \frac{{{x_1} + {x_2}}}{{\sqrt 2 }},{\kern 1pt} x = \frac{{{x_1} - {x_2}}}{{\sqrt 2 }}\) for the center-of-mass and relative motion. The anharmonicity of the trap couples these motions and, there-fore, the problem becomes significantly more complicated. In previous works, the anharmonicity V a = VV h of the trap has been taken into account in the framework of perturbation theory. In this work, the energy level shifts of a two-body atomic system are calculated beyond the perturbation theory for different magnitudes of parameter g of the interatomic interaction. The results are compared to those computed using the perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  2. G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E. Bohn, and S. Jochim, “Fermionization of two distinguishable fermions,” Phys. Rev. Lett. 108, 075303 (2012).

    Article  ADS  Google Scholar 

  3. E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, “Confinement-induced resonances in low-dimensional quantum systems,” Phys. Rev. Lett. 104, 153203 (2010).

    Article  ADS  Google Scholar 

  4. T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, “Two cold atoms in a harmonic trap,” Found. Phys. 28, 549 (1998).

    Article  Google Scholar 

  5. M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938 (1998).

    Article  ADS  Google Scholar 

  6. S. Sala, P.-I. Schneider, and A. Saenz, “Inelastic confinement-induced resonances in low-dimensional quantum systems,” Phys. Rev. Lett. 109, 073201 (2012).

    Article  ADS  Google Scholar 

  7. S.-G. Peng, H. Hu, X.-J. Liu, and P. D. Drummond, “Confinement-induced resonances in anharmonic waveguides,” Phys. Rev. A 84, 043619 (2011).

    Article  ADS  Google Scholar 

  8. D. S. Murphy, J. F. McCann, J. Goold, and Th. Busch, “Boson pairs in a one-dimensional split trap,” Phys. Rev. A 76, 053616 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ishmukhamedov.

Additional information

Original Russian Text © I.S. Ishmukhamedov, D.T. Aznabayev, S.A. Zhaugasheva, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishmukhamedov, I.S., Aznabayev, D.T. & Zhaugasheva, S.A. Two-body atomic system in a one-dimensional anharmonic trap: The energy spectrum. Phys. Part. Nuclei Lett. 12, 680–688 (2015). https://doi.org/10.1134/S1547477115050076

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115050076

Keywords

Navigation