Skip to main content
Log in

A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study a three-body system with zero-range interactions in a one-dimensional harmonic trap. The system consists of two spin-polarized fermions and a third particle which is distinct from two others (2 + 1 system). First we assume that the particles have equal masses. For this case the system in the strongly and weakly interacting limits can be accurately described using wave function factorized in hypercylindrical coordinates. Inspired by this result we propose an interpolation ansatz for the wave function for arbitrary repulsive zero-range interactions. By comparison to numerical calculations, we show that this interpolation scheme yields an extremely good approximation to the numerically exact solution both in terms of the energies and also in the spin-resolved densities. As an outlook, we discuss the case of mass imbalanced systems in the strongly interacting limit. Here we find spectra that demonstrate that the triply degenerate spectrum at infinite coupling strength of the equal mass case is in some sense a singular case as this degeneracy will be broken down to a doubly degenerate or non-degenerate ground state by any small mass imbalance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Serwane et al., Science 332, 6027 (2011)

    Article  Google Scholar 

  2. G. Zürn et al., Phys. Rev. Lett. 108, 075303 (2012)

    Article  ADS  Google Scholar 

  3. A. Wenz et al., Science 342, 457 (2013)

    Article  ADS  Google Scholar 

  4. G. Zürn et al., Phys. Rev. Lett. 111, 175302 (2013)

    Article  ADS  Google Scholar 

  5. S. Will, T. Best, S. Braun, U. Schneider, I. Bloch, Phys. Rev. Lett. 106, 115305 (2011)

    Article  ADS  Google Scholar 

  6. F. Nogrette et al., Phys. Rev. X 4, 021034 (2014)

    Google Scholar 

  7. H. Labuhn et al., Phys. Rev. A 90, 023415 (2014)

    Article  ADS  Google Scholar 

  8. S. Will et al., Phys. Rev. Lett. 113, 147205 (2014)

    Article  ADS  Google Scholar 

  9. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  10. C. Chin, R. Grimm, P.S. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  11. B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004)

  12. M.A. Cazalilla et al., Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  13. B. Paredes et al., Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  14. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  15. T. Kinoshita, T. Wenger, D.S. Weiss, Phys. Rev. Lett. 95, 190406 (2005)

    Article  ADS  Google Scholar 

  16. L.W. Tonks, Phys. Rev. 50, 955 (1936)

    Article  ADS  Google Scholar 

  17. M.D. Girardeau, J. Math. Phys. 1, 516 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  19. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 95, 190407 (2005)

    Article  ADS  Google Scholar 

  20. E. Haller et al., Science 325, 1224 (2009)

    Article  ADS  Google Scholar 

  21. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. A 74, 063611 (2006)

    Article  ADS  Google Scholar 

  22. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. A 75, 043608 (2007)

    Article  ADS  Google Scholar 

  23. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. Lett. 100, 040401 (2008)

    Article  Google Scholar 

  24. F. Deuretzbacher, K. Bongs, K. Sengstock, D. Pfannkuche, Phys. Rev. A 75, 013614 (2007)

    Article  ADS  Google Scholar 

  25. E. Tempfli, S. Zöllner, P. Schmelcher, New J. Phys. 11, 073015 (2009)

    Article  ADS  Google Scholar 

  26. M.D. Girardeau, Phys. Rev. A 83, 011601(R) (2011)

    Article  ADS  Google Scholar 

  27. I. Brouzos, P. Schmelcher, Phys. Rev. Lett. 108, 045301 (2012)

    Article  ADS  Google Scholar 

  28. I. Brouzos, A. Förster, Phys. Rev. A 89, 053632 (2014)

    Article  ADS  Google Scholar 

  29. B. Wilson, A. Förster, C.C.N. Kuhn, I. Roditi, D. Rubeni, Phys. Lett. A 378, 1065 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. N.T. Zinner et al., Europhys. Lett. 107, 60003 (2014)

    Article  ADS  Google Scholar 

  31. L. Guan, S. Chen, Y. Wang, Z.-Q. Ma, Phys. Rev. Lett. 102, 160402 (2009)

    Article  ADS  Google Scholar 

  32. C.N. Yang, Chin. Phys. Lett. 26, 120504 (2009)

    Article  ADS  Google Scholar 

  33. M.D. Girardeau, Phys. Rev. A 82, 011607(R) (2010)

    Article  ADS  Google Scholar 

  34. L. Guan, S. Chen, Phys. Rev. Lett. 105, 175301 (2010)

    Article  ADS  Google Scholar 

  35. D. Rubeni, A. Förster, I. Roditi, Phys. Rev. A 86, 043619 (2012)

    Article  ADS  Google Scholar 

  36. G.E. Astrakharchik, I. Brouzos, Phys. Rev. A 88, 021602(R) (2013)

    Article  ADS  Google Scholar 

  37. I. Brouzos, P. Schmelcher, Phys. Rev. A 87, 023605 (2013)

    Article  ADS  Google Scholar 

  38. P.O. Bugnion, G.J. Conduit, Phys. Rev. A 87, 060502(R) (2013)

    Article  ADS  Google Scholar 

  39. S.E. Gharashi, D. Blume, Phys. Rev. Lett. 111, 045302 (2013)

    Article  ADS  Google Scholar 

  40. T. Sowiński, T. Grass, O. Dutta, M. Lewenstein, Phys. Rev. A 88, 033607 (2013)

    Article  ADS  Google Scholar 

  41. A.G. Volosniev et al., Nat. Commun. 5, 5300 (2014)

    Article  ADS  Google Scholar 

  42. E.J. Lindgren et al., New J. Phys. 16, 063003 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. S.E. Gharashi, X.Y. Yin, D. Blume, Phys. Rev. A 89, 023603 (2014)

    Article  ADS  Google Scholar 

  44. F. Deuretzbacher, D. Becker, J. Bjerlin, S.M. Reimann, L. Santos, Phys. Rev. A 90, 013611 (2014)

    Article  ADS  Google Scholar 

  45. A.G. Volosniev et al., arXiv:1408.3414 (2014)

  46. X. Cui, T.-L. Ho, Phys. Rev. A 89, 023611 (2014)

    Article  ADS  Google Scholar 

  47. T. Sowiński, M. Gajda, K. Rzążewski, Europhys. Lett. 109, 26005 (2015)

    Article  ADS  Google Scholar 

  48. J. Levinsen, P. Massignan, G.M. Bruun, M.M. Parish, arXiv:1408.7096 (2014)

  49. M.D. Girardeau, M. Olshanii, Phys. Rev. A 70, 023608 (2004)

    Article  ADS  Google Scholar 

  50. M.D. Girardeau, A. Minguzzi, Phys. Rev. Lett. 99, 230402 (2007)

    Article  ADS  Google Scholar 

  51. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. A 78, 013629 (2008)

    Article  ADS  Google Scholar 

  52. F. Deuretzbacher et al., Phys. Rev. Lett. 100, 160405 (2008)

    Article  ADS  Google Scholar 

  53. B. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, A. Minguzzi, Phys. Rev. A 84, 023626 (2011)

    Article  ADS  Google Scholar 

  54. N.L. Harshman, Phys. Rev. A 86, 052122 (2012)

    Article  ADS  Google Scholar 

  55. M.A. Garcia-March, Th. Busch, Phys. Rev. A 87, 063633 (2013)

    Article  ADS  Google Scholar 

  56. M.A. Garcia-March et al., Phys. Rev. A 88, 063604 (2013)

    Article  ADS  Google Scholar 

  57. N.L. Harshman, Phys. Rev. A 89, 033633 (2014)

    Article  ADS  Google Scholar 

  58. S. Campbell, M.A. Garcia-March, T. Fogarty, Th. Busch, Phys. Rev. A 90, 013617 (2014)

    Article  ADS  Google Scholar 

  59. M.A. Garcia-March et al., New J. Phys. 16, 103004 (2014)

    Article  ADS  Google Scholar 

  60. P. D’Amico, M. Rontani, J. Phys. B 47, 065303 (2014)

    Article  ADS  Google Scholar 

  61. N.P. Mehta, Phys. Rev. A 89, 052706 (2014)

    Article  ADS  Google Scholar 

  62. A.S. Dehkharghani et al., arXiv:1409.4224 (2014)

  63. M.A. Garcia-March et al., Phys. Rev. A 90, 063605 (2014)

    Article  ADS  Google Scholar 

  64. J.B. McGuire, J. Math. Phys. 5, 622 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj T. Zinner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loft, N.J.S., Dehkharghani, A.S., Mehta, N.P. et al. A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap. Eur. Phys. J. D 69, 65 (2015). https://doi.org/10.1140/epjd/e2015-50845-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50845-9

Keywords

Navigation