Skip to main content
Log in

Simulation of graphite oxidation in oxygen at 400–800°C

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A computer model of nuclear-grade graphite is proposed that allows a simulation of graphite-sample oxidation to be performed (with an error 7%) taking into account the granulometric composition, porosity, and density. The results from simulating the GMZ graphite oxidation in the regime of chemical kinetics showed a satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Kim and H. C. No, “Experimental study on the oxidation of nuclear graphite and development of an oxidation model,” J. Nucl. Mater. 349(1–2), 182–194 (2006).

    Article  ADS  Google Scholar 

  2. A. Blanchard, “Appendix 2: The thermal oxidation of graphite,” in Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems: IAEA-TECDOC-1154 (IAEA, Vienna, 2000).

    Google Scholar 

  3. M. S. El-Genk and J.-M. P. Tournier, “Comparison of oxidation model predictions with gasification data of IG-110, IG-430 and NBG-25 nuclear graphite,” J. Nucl. Mater. 420(1–3), 141–158 (2012).

    Article  ADS  Google Scholar 

  4. H. Badenhorst, B. Rand, and W. W. Focke, “Modelling of natural graphite oxidation using thermal analysis techniques,” J. Therm. Anal. Calorim. 99(1), 211–228 (2010).

    Article  Google Scholar 

  5. W. S. Cornwall, Wigner Stresses: TRG Report 40 (R) (UKAEA, 1962).

    Google Scholar 

  6. M. Lasithiotakisa, B. J. Marsden, and T. J. Marrow, “Application of an independent parallel reactions model on the annealing kinetics of BEPO irradiated graphite,” J. Nucl. Mater. 427, 95–109 (2012).

    Article  ADS  Google Scholar 

  7. H. Li, S. L. Fok, and B. J. Marsden, “An analytical study on the irradiation-induced stresses in nuclear graphite moderator bricks,” J. Nucl. Mater. 372, 164–170 (2008).

    Article  ADS  Google Scholar 

  8. J. J. Lee, K. G. Tushar, and K. L. Sudarshan, “Oxidation rate of nuclear-grade graphite NBG-18 in the kinetic regime for VHTR air ingress accident scenarios,” J. Nucl. Mater. 438(1–3), 77–87 (2013).

    Article  ADS  Google Scholar 

  9. R. P. Wichner, T. D. Burchell, and C. I. Contescu, “Penetration depth and transient oxidation of graphite by oxygen and water vapor,” J. Nucl. Mater. 393(3), 518–521 (2009).

    Article  ADS  Google Scholar 

  10. H. Badenhorst and W. Focke, “Comparative analysis of graphite oxidation behaviour based on microstructure,” J. Nucl. Mater. 442, 75–82 (2013).

    Article  ADS  Google Scholar 

  11. M. Davies, “Qualification of selected graphites for a future HTR,” at Technical Meeting on High-Temperature Qualification of High Temperature Gas-Cooled Reactor Materials (IAEA, Vienna, 2014).

    Google Scholar 

  12. V. V. Goncharov, N. S. Burdakov, V. I, Karpukhin, and P. A. Platonov, Effect of Irradiation on Graphite of Nuclear Reactors (Atomizdat, Moscow, 1978).

    Google Scholar 

  13. V. S. Ostrovskii, I. N. Krutova, T. D. Shashkova, and A. P. Fedoseev, “Variations in Porosity and Penetrability of a Carbon Material during the Heat Treatment,” in Structural Materials Based on Graphite (Collection of works no. 3) (Metallurgiya, Moscow, 1967), pp. 204–208.

    Google Scholar 

  14. V. P. Kichor, R. V. Feshchur, V. V. Kozik, S. I. Vorobets, and N. E Selyuchenko, Economical and Statistical Modeling and Forecasting (L’vivs’ka Politekhnika National University Press, L’viv, 2007).

    Google Scholar 

  15. M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator,” ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998).

    Article  MATH  Google Scholar 

  16. SIMD-oriented Fast Mersenne Twister (SFMT): Twice Faster than Mersenne Twister. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

  17. R. Tor, Collusion-Secure Fingerprinting. A Simulation of the Boneh and Shaw Scheme. Coding Theory and Cryptography. Bergen: Department of Informatics Universitas Bergensis. www.ii.uib.no/~georg/coding/Students/Tor/collusion_secure_fp.pdf

  18. H. Badenhorst, Graphite Oxidation (DST Chair in Carbon Materials and Technology, Pretoria, 2009).

    Google Scholar 

  19. A. M. Odeichuk and A. Yu. Gud, “Simulation model for studying heteroskedastic time series in information systems,” Visnik Akademi-Mitno-Sluzhbi Ukraïni, no. 1, 102–110 (2010).

    Google Scholar 

  20. N. F. Morozov, R. V. Gol’dshtein, and V. A. Gorodtsov, Simulation of Mechanical Behavior of Nanostructural Formations (St. Petersburg State University, Ishlinskii Institute for Problems in Mechanics, RAN, Moscow, 2009).

    Google Scholar 

  21. A. S. Lobasov and A. V. Minakov, “Computer simulation of heat and mass transfer processes in microchannels using the σ-Flow CFD-package,” Komp. Issled. Modelir. 4(4), 781–792 (2012).

    Google Scholar 

  22. A. N. Odeichuk, “Generalized criterion of efficiency of models of predicting time series in information systems,” Bionika Intelektu, no. 1, 113–119 (2009).

    Google Scholar 

  23. Processes of Micro- and Nanotechnology (SPbGETU, St. Petersburg, 2010).

  24. S. J. Gregg and R. F. S. Tyson, “The kinetics of oxidation of carbon and graphite by oxygen at 500°C-600°C,” Carbon 3(1), 39–42 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Odeichuk.

Additional information

Original Russian Text © A.N. Odeichuk, A.I. Komir, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odeichuk, A.N., Komir, A.I. Simulation of graphite oxidation in oxygen at 400–800°C. Phys. Part. Nuclei Lett. 12, 355–361 (2015). https://doi.org/10.1134/S1547477115020181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115020181

Keywords

Navigation