Skip to main content
Log in

Thermodynamic Analysis of the Oxidation of Radioactive Graphite in Molten Na2CO3–K2CO3–Sb2O3 in a Carbon Dioxide Atmosphere

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

More than 100 power reactors, reactors for plutonium production, and research reactors are presently available in the world. In these reactors, graphite is used as a reflector, moderator, and cladding of fuel elements. Flameless combustion is a promising method for reducing the amount of solid radioactive waste. The method is based on the oxidation of solid radioactive waste in oxide–carbonate melts and makes it possible to reduce the radioactive graphite volume considerably. Thermodynamic simulation and analysis of the oxidation of radioactive graphite in molten Na2CO3–K2CO3–Sb2O3 in a carbon dioxide atmosphere are performed using the TERRA software package. The thermodynamic simulation is conducted at a pressure of 1 atm and initial and final temperatures of 273 and 3273 K, respectively. The step of temperature changing is 100 K. Based on these data, the distributions of elements between condensed and gas phases are examined. The simulation results show that carbon disappears at a temperature of 873 K. Heating of the system up to 1073 K leads to the evaporation of condensed antimony compounds. Heating of the system up to 1673 K leads to the evaporation of condensed potassium, sodium, chlorine, uranium, and cesium compounds. Heating of the system up to 2273 K leads to the evaporation of condensed nickel compounds. Heating of the system up to 2573 K leads to the evaporation of condensed calcium, plutonium, beryllium, strontium, americium, and europium compounds. Only a vapor–gas phase is observed at temperatures above 2573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. M. Beskorovainyi, B. A. Kalin, and P. A. Platonov, Structural Materials of Nuclear Reactors (Energoatomizdat, Moscow, 1995).

    Google Scholar 

  2. I. V. Blinova and I. D. Sokolova, “Handling with Radioactive Graphite Waste,” Atom. Tekhn. Rubezhom, No. 6, 3–14 (2012).

    Google Scholar 

  3. A. V. Bushuev, A. F. Kozhin, V. N. Zubarev, et al., “Radioactive Contamination of Spent Reactor Graphite,” Atom. Energ., 117 (1), 156–159 (2014).

    Google Scholar 

  4. Nuclear Power Reactors in the World (IAEA, Vienna, 2002), Vol. 2, p. 26.

  5. A. A. Romenkov, M. A. Tuktarov, and V. P. Pyshkin, “Flameless combustion of radioactive wastes in molten salts,” Environment. Saf., No. 3 (2006).

  6. G. V. Belov and B. G. Trusov, Thermodynamic Simulation of Chemically Reacting Systems (MGTU im. N.E. Baumana, Moscow, 2013).

  7. B. G. Trusov, in Proceedings of the III International Symposium on Theoretical and Applied Plasma Chemistry (Ivanovo, 2002), p. 487.

  8. N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic simulation of the behavior of radionuclides during heating (combustion) radioactive graphite in a carbon dioxide atmosphere,” Pozharovzryvobezopasnost’, 23 (11), 52–60 (2014).

    Google Scholar 

  9. N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alexeev, “The behavior of uranium, plutonium, and americium on heating radioactive graphite in a carbon dioxide atmosphere,” Tekhnosfern. Bezopasnost’, No. 1 (2), 72–75 (2014).

  10. N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alexeev, “Computer simulation of thermal processes involving calcium, strontium, and cesium radionuclides on heating radioactive graphite in a carbon dioxide atmosphere,” Izv. Vyssh. Uchebn. Zaved., Yadern. Energ., No. 1, 73–82 (2017).

  11. N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alexeev, “Thermodynamic analysis of thermal processes involving U, Am, and Pu radionuclides on heating radioactive graphite in a carbon dioxide atmosphere,” Inzhenern. Fiz., No. 10, 27–32 (2016).

  12. D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alexeev, “Thermodynamic study of the composition of the gas phase over melts of the Pb + Bi system,” Perspekt. Mat., No. 13, 858–864 (2011).

  13. D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alexeev, “Composition and thermophysical properties of the (Pb + Bi) molten system: Vapor under various conditions,” Prikl. Fiz., No. 3, 32–28 (2012).

  14. D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, S. G. Alexeev, and P. S. Popel’, “Thermodynamic simulation of evaporation of the Pb + Bi melts under various pressures,” Khim. Fiz. Mezoskop., No. 13, 350–355 (2011).

  15. N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alexeev, “Thermodynamic simulation of the behavior of radionuclides on heating (combustion) radioactive graphite in water vapors,” Pozharovzryvobezopasnost’, No.10, 38–47 (2014).

  16. N. M. Barbin, “Thermodynamic simulation of the thermal behavior of Li2CO3 + Na2CO3 and CaCO3 + Na2CO3 melts,” Khim. Fiz. Mezoskop., No. 3, 354–360 (2008).

  17. N. M. Barbin, D. I. Terent’ev, A. V. Peskov, and S. G. Alexeev, “Thermodynamic simulation of the behavior of radionuclides on heating (combustion) radioactive graphite in air,” Pozharovzryvobezopasnost’, No. 3, 58–67 (2014).

  18. N. M. Barbin, I. V. Tikina, D. I. Terent’ev, and S. G. Alexeev, “Thermodynamic simulation of the vapor phase during evaporation of molten Wood’s alloy under various pressures,” Prikl. Fiz., No. 3, 12–16 (2014).

  19. N. Barbin, D. Terentiev, S. Alexeev, and T. Barbina, “Thermodynamic simulation of the Pb + Bi melt evaporation under various pressures and temperatures,” Comp. Mater. Sci., 66, 28–33 (2013).

    Article  CAS  Google Scholar 

  20. N. M. Barbin, D. I. Terentiev, and S. G. Alexeev, “Computer calculations for thermal behavior of Na2CO3–Li2CO3 melt,” J. Eng. Thermophys., No. 3, 308–314 (2011).

  21. N. M. Barbin, I. V. Ovchinnikova, D. I. Terent’ev, and S. G. Alexeev, “Thermodynamic simulation of thermal processes occurring in molten Wood’s alloy under various conditions,” Prikl. Fiz., No. 3, 8–11 (2014).

  22. N. M. Barbin, D. I. Terentiev, S. G. Alexeev, and T. M. Barbina, “Thermodynamic analysis of radioactive graphite reprocessing by incineration in air and oxidation in molten salt,” J. Radioanal. Nucl. Chem., No. 3, 1747–1757 (2014).

  23. N. M. Barbin, D. I. Terent’ev, A. V. Peskov, and S. G. Alexeev, “Comparative thermodynamic analysis of processing of radioactive graphite by incineration in air and oxidation in a molten salt,” Rasplavy, No. 4, 25–35 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Barbin.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbin, N.M., Sidash, I.A., Terent’ev, D.I. et al. Thermodynamic Analysis of the Oxidation of Radioactive Graphite in Molten Na2CO3–K2CO3–Sb2O3 in a Carbon Dioxide Atmosphere. Russ. Metall. 2019, 743–749 (2019). https://doi.org/10.1134/S0036029519080032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519080032

Keywords:

Navigation